Safety Instructions

1. Attention S-1
2. Explanation of warnings and notes S-1
3. Safety information S-2
 3.1 General S-2
 3.2 Qualified personnel S-2
 3.3 Liability S-2
 3.4 Installation and operating conditions S-2
 3.5 Residual risks S-2
 3.5.1 Release device S-3
 3.5.2 Transport S-3
 3.5.3 Assembly and start-up S-3
 3.5.4 Maintenance and repair S-3
 3.5.5 System integrator S-4

Chapter 1 Introduction

1. Introduction 1-1
 1.1 Description of the robot 1-1
 1.2 Type code explanation 1-1
2. Identification 1-2
3. Part names 1-2

Chapter 2 Model overview

1. Overview 2-1

Chapter 3 Installation

1. Unpacking 3-1
 1.1 Unpacking the shipping box 3-1
 1.2 Check the damage 3-1
 1.3 Lifting and transportation 3-1
2. Mounting the robot 3-2
3. Mounting the motors, cabling and gearbox housing 3-3
 3.1 Mounting the motors 3-3
 3.2 Mounting the gearbox housing into the body and connecting the cables 3-4
 3.3 Mounting the covers 3-8
4. Assembling the secondary arms 3-9
 4.1 Make an assembly 3-9
 4.2 Mount the arm assembly on the robot 3-10
5. Mounting the rotational axis on the cardan joint 3-11
6. Calibration 3-12
7. Gripper interface 3-14
 7.1 With rotational axis 3-14
 7.2 Without rotational axis 3-14

Chapter 4 Maintenance

1. Periodic maintenance 4-1
 1.1 Springs 4-1
 1.2 Ball bearing cups 4-2
 1.3 Rotational axis 4-2
2. Cleaning the robot 4-4
3. Spare parts 4-4

Chapter 5 Robot settings

1. Kinematics 5-1
2. Workspace 5-2
3. Software limits 5-3

Chapter 6 Specifications

1. Basic specifications 6-1
 1.1 Cycle time 6-2
2. External view and dimensions 6-3
 2.1 CR_UGD4_XL_HD 6-3
 2.2 CR_UGD4_HD 6-4
 2.3 CR_UGD4_XS_HD 6-5
3. Design specifications 6-6
 3.1 Occupation area of robot 6-6
 3.2 Software design 6-7
 3.2.1 Dimensions and limits 6-8
Safety Instructions

Contents

1. Attention S-1
2. Explanation of warnings and notes S-1
3. Safety information S-2
 3.1 General S-2
 3.2 Qualified personnel S-2
 3.3 Liability S-2
 3.4 Installation and operating conditions S-2
 3.5 Residual risks S-2
 3.5.1 Release device S-3
 3.5.2 Transport S-3
 3.5.3 Assembly and start-up S-3
 3.5.4 Maintenance and repair S-3
 3.5.5 System integrator S-4
1. Attention

Information in this document can change without prior notice.

OMRON EUROPE B.V. cannot be held responsible for any damage to the environment, to the machine or to the functioning of the machine occurred by errors or missing data in the illustrations, drawings or specifications.

No part of this manual and added documentation may be copied, reproduced or translated into another language without prior written approval.

Read and understand the material contained in this user’s manual before you work on the CR_UGD4_HD robot for the first time. This user's manual is supposed to help you use the capabilities of the CR_UGD4_HD robot safely and properly.

2. Explanation of warnings and notes

This manual uses the following safety alert symbols and signal words to provide safety instructions that must be observed and to describe handling precautions, prohibited actions, and compulsory actions. Make sure you understand the meaning of each symbol and signal word and then read this manual.

DANGER

This indicates an immediately hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

This indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

NOTE

Explains the key point in the operation in a simple and clear manner.
3. Safety information

3.1 General

This ‘3. Safety information’ subchapter contains information regarding working with the CR_UGD4_HD robot. Qualified personnel working with the CR_UGD4_HD robot must have read and understood the CR_UGD4_HD robot documentation, including the safety information chapter.

3.2 Qualified personnel

These are people who, due to their specialist training, knowledge, and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential hazards.

3.3 Liability

The CR_UGD4_HD robot is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, misuse of the CR_UGD4_HD robot may constitute a risk to life and limb or cause damage to the CR_UGD4_HD robot and to other material property.

3.4 Installation and operating conditions

You may only use the components in accordance with the installation and operating conditions described in the documentation. The operating conditions at the installation location must be checked and maintained in accordance with the required technical data. Within the meaning of the Machinery Directive the CR_UGD4_HD robot is an incomplete machine. Commissioning is prohibited until the usable machine or system in which the CR_UGD4_HD robot is installed meets all requirements of the Machinery directive 2006/42/EC.

For the CR_UGD4_HD robot you have to observe the following standards, directives, and regulations:

3.5 Residual risks

Safety and health risks arising from the robot mechanics have been reduced by means of safety technology and design engineering. However, a residual risk remains, since the robot mechanics will be move by an automated control system.

The following are typical warnings concerning residual risks which cannot be assigned to a specific action. The expression of safety labels is identical to the safety information.
3.5.1 Release device

The robot mechanics are not supplied with an release switch to control the brakes of the motors.

WARNING

- MOUNT A RELEASE SWITCH ON THE MACHINE SO THE ARMS (MOTOR) OF THE ROBOT COULD BE MANUALLY MOVED.
- MOVING AN AXIS WITH AN IMPROPERLY WORKING RELEASE SWITCH CAN DAMAGE THE MOTOR BRAKE. THIS CAN RESULT IN PERSONAL INJURY AND MATERIAL DAMAGE.
- BEFORE RELEASING THE BRAKE, YOU HAVE TO BE SURE THAT NO ONE IS IN THE HAZARD AREA OF THE ROBOT.

3.5.2 Transport

The prescribed transport position of the robot must be observed. Transportation must be carried out in accordance with the transportation instructions or assembly instructions of the robot.

WARNING

- ONLY USE AUTHORIZED HANDLING EQUIPMENT WITH A SUFFICIENT LOAD-BEARING CAPACITY TO TRANSPORT THE ROBOT.
- WEAR SUITABLE PROTECTIVE CLOTHING IF NECESSARY.

3.5.3 Assembly and start-up

Before starting up systems and devices for the first time, a check must be carried out to ensure that the system and devices are completed and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The following tests must be carried out before start-up and recommissioning. It must be ensured that:

- The robot is correctly installed and fastened in accordance with the specifications in the assembly instructions.
- There are no foreign bodies or loose parts on the robot.
- All required safety equipment is correctly installed and operational.

WARNING

- A WRONG INSTALLED ROBOT MAY THROW OFF HIS ARMS.
- WEAR SUITABLE PROTECTIVE CLOTHING IF NECESSARY.

3.5.4 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept original or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the robot:

- Switch of the machine (system) where the robot is built-in (e.g. with a padlock) to prevent it from being switched on again
- Label the machine (system) with a sign indication that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The emergency stop from the machine (system) must remain active. If safety functions or safeguards are deactivated during maintenance or repair work, they must be reactivated immediately after the work is completed.
3.5.5 System integrator

The robot is safely integrated into a complete system by the system integrator. The system integrator is responsible for the following tasks:

- Installing the robot
- Performing risk assessment
- Implementing the required safety functions and safeguards
- Issuing the declaration of conformity
- Attaching the CE mark
- Creating the operating instructions for the complete system
Chapter 1 Introduction

Contents

1. Introduction 1-1
 1.1 Description of the robot 1-1
 1.2 Type code explanation 1-1
2. Identification 1-2
3. Part names 1-2
1. Introduction

Congratulations with the purchase of your high speed Delta robot IP69K. This is a high speed pick and place robot which uses state-of-the-art stainless steel materials and the latest servo drive technology to be put in use in the most demanding pick and place applications.

This manual should be read before the commissioning of the robot. By mechanical engineers in the design phase during the integration of the robot in the machine and by software engineers to check the performance envelope of the robot.

This manual describes the main versions of the CR_UGD4_HD robot, and all options. Where applicable check the appropriate data for your robot type, the type can be found on the identification tag of the robot.

1.1 Description of the robot

The CR_UGD4_HD Delta robot is a high speed pick and place robot which uses state-of-the-art stainless steel materials and the latest servo drive technology to be put in use in the most demanding pick and place applications. The robot is designed as a 3-axis (optional 4th rotational axis) Delta kinematic system.

Characteristics of the robot:
• Requires very low maintenance
• 3 + 1 (rotational axis optional) degrees of freedom
• Compact design for mounting in a machine
• Low noise level < 68 dB (A)
• Equipped with special Delta robot gearboxes
• IP69K protection class

1.2 Type code explanation

CR_UGD4_XL_R_HD: 3 + 1 axes (with rotational axis), 1300 mm working range, max. payload: 2 kg
CR_UGD4_XL_NR_HD: 3 axes (without rotational axis), 1300 mm working range, max. payload: 2 kg
CR_UGD4_R_HD: 3 + 1 axes (with rotational axis), 1100 mm working range, max. payload: 2 kg
CR_UGD4_NR_HD: 3 axes (without rotational axis), 1100 mm working range, max. payload: 2 kg
CR_UGD4_XS_R_HD: 3 + 1 axes (with rotational axis), 650 mm working range, max. payload: 2 kg
CR_UGD4_XS_NR_HD: 3 axes (without rotational axis), 650 mm working range, max. payload: 2 kg
2. **Identification**

On the robot base plate an identification tag is mounted, important data on this plate:

- Robot type
- Total weight of the robot
- Year of production
- Serial number, important for ordering spareparts

3. **Part names**

The CR_UGD4_HD robot consists of three radially placed axis which give the TCP freedom to move in three directions, X, Y and Z. An optional fourth axis can take care of the rotation, Rz, of the TCP.

Optionally the robot is equipped with an extra servo motor for the rotational axis.
Chapter 2 Model overview

Contents

1. Overview 2-1
1. Overview

The specifications are given in the below figure, if specifications differ for models, for instance with or without rotational axis, it is indicated in the specification list. The Delta robot is delivered standard with IP69K protection.

CR_UGD4_XL_HD (1300 mm)

CR_UGD4_HD (1100 mm)
CR_UGD4_XS_HD (650 mm)

NOTE

Note that the rotation servo motor, on the top of the robot, is optional.
Chapter 3 Installation

Contents

1. **Unpacking** 3-1
 1.1 Unpacking the shipping box 3-1
 1.2 Check the damage 3-1
 1.3 Lifting and transportation 3-1

2. **Mounting the robot** 3-2

3. **Mounting the motors, cabling and gearbox housing** 3-3
 3.1 Mounting the motors 3-3
 3.2 Mounting the gearbox housing into the body and connecting the cables 3-4
 3.3 Mounting the covers 3-8

4. **Assembling the secondary arms** 3-9
 4.1 Make an assembly 3-9
 4.2 Mount the arm assembly on the robot 3-10

5. **Mounting the rotational axis on the cardan joint** 3-11

6. **Calibration** 3-12

7. **Gripper interface** 3-14
 7.1 With rotational axis 3-14
 7.2 Without rotational axis 3-14
1. Unpacking

1.1 Unpacking the shipping box

The robot comes in a special shipping box.

The following step must be carried out to remove the cover from the box:
• Unscrew the screws from the cover of the wooden box
• Now remove the cover

1.2 Check the damage

First take out the individual components from the package and check that everything is complete according to the following list:
• 1 x rotational axis (in case of models with optional rotational axis)
• 1 x TCP - Tool Center Point (in case of models without rotational axis)
• 6 x secondary arms
• 12 x springs
• 1 x top cover

Check all the components and the robot for transportation damage.

1.3 Lifting and transportation

Before the robot is lifted, it must be ensured that it is free from obstructions.
Remove all the screws where the robot is mounted with in the box.
The robot must be lifted and transported by using lifting tackle or a forklift truck. Two lifting straps has to be attached into two eyebolts that are screwed into the baseplate. The lifting straps has to be long enough and must be routed in such a way that the robot is not damaged.

WARNING
• THE ROBOT MAY TILT DURING TRANSPORTATION.
• ADDITIONAL SAFEGUARDING MEASURE MUST BE TAKEN.
• WEAR SUITABLE PROTECTIVE CLOTHING IF NECESSARY.
• WHEN USING A FORKLIFT TRUCK, DRIVE EXTREMELY SLOWLY AND CAREFULLY.
2. Mounting the robot

The mounting surface for the robot must be machined and of an appropriate quality. It’s also possible to use a levelling element to align the robot. Three M16 bolts are needed to mounting the robot to the frame, exact bolt length depends on frame layout. The tightening torque of a M16 6.8 bolt is 140Nm.

The below figure shows the mounting pattern from the robot.

![3 x 120° mounting pattern](image)

NOTE

It is advisable to put one motor of the robot in line with the direction of the transport belt to make programming easier.
3. Mounting the motors, cabling and gearbox housing

3.1 Mounting the motors

When your robot is delivered without motors, you have to mount them by yourself.

Before mounting the servo motors you have to be sure that the clamping hub screw is in the right position. Please see also the below picture.

- Unscrew the blind stop
- Be sure that the head from the clamping hub screw is in line with the hole

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blind stop</td>
</tr>
<tr>
<td>2</td>
<td>Clamping hub screw</td>
</tr>
</tbody>
</table>

Now that the clamping hub screw is in the right position, you can install the motor.

Please be sure that the connectors from the motor are correctly positioned.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blind stop hole</td>
</tr>
<tr>
<td>2</td>
<td>4 x Allen bolt with washer</td>
</tr>
</tbody>
</table>
• Put a drop of Loctite 243 on the 4 Allen bolts
• Now mount the 4 Allen bolts with washers
• Tighten the clamping hub screw with the specified torque
• Mount the blind stop

3.2 Mounting the gearbox housing into the body and connecting the cables

First of all we have to feed the servo cables from the electrical cabinet through the cable feed through the pipe in the body (see below picture). Please don’t forget to put a hose around the cables to keep water outside the body.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable feed through pipe</td>
</tr>
<tr>
<td>2</td>
<td>Servo cables</td>
</tr>
</tbody>
</table>

The body is executed with 3 compartments. Every compartment has his own number, starting from 1 till 3. The gearbox housing and the nut are also numbered. Please mount all the parts with the same numbers, that means: Compartment 1 with gearbox housing 1 and nut 1.

We will start with assembling of compartment 1:
• Put the plastic ring in the chamber
• Put the nut with number 1 in the chamber
Now feed the servo cables for motor 1 through the hole from the nut, plastic ring and housing.

Now attach the cables to the motor.
Now the servo cables are attached, we have to mount the gearbox housing into the body. Please be sure that the rubber O-ring (see below picture) is properly installed into the groove.
As you can see below, there is a dowel pin welded in the ring from the body. The gearbox housing has a cutout for this pin. These have to be mounted into each other.
Now you have to put the plastic ring on the flange and mount the nut on the screw-thread (see below picture). First try to fasten the nut as far as you can with your hand.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plastic ring</td>
</tr>
<tr>
<td>2</td>
<td>Screw-thread</td>
</tr>
<tr>
<td>3</td>
<td>Nut</td>
</tr>
</tbody>
</table>

When you can’t tighten the nut with your hand anymore, you have to use the special tool which is delivered with your robot (see below picture).

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole for torque wrench 1/2 inch</td>
</tr>
</tbody>
</table>

When the nut is tightened with your hand you have to tighten it with an torque wrench and the special tool as shown below (see next picture). The tightening torque is : 180 Nm.
Repeat these actions also for the other 2 compartments.

Now your motors and gearbox housings are mounted.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Torque wrench</td>
</tr>
<tr>
<td>2</td>
<td>Special tool</td>
</tr>
</tbody>
</table>
3.3 Mounting the covers

For mounting the cover you first have to adjust the mounting bracket.

- Mount the bracket on the 2 thread-ends (see below picture)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thread-end</td>
</tr>
<tr>
<td>2</td>
<td>Bracket</td>
</tr>
</tbody>
</table>

- Adjust the height from the bracket to between 26-29 cm (see below picture)

- Now lock the 4 nuts so the bracket is mounted
- Now mount the cover on the robot with the special bolt, please be sure that the edge of the robot body is totally covered
4. Assembling the secondary arms

4.1 Make an assembly

Before mounting the secondary arms on the robot, we have to pre-assemble them as shown on the below figure, so that we get an arm assembly.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sanitary cup holder incl. ball bearing cup</td>
</tr>
<tr>
<td>2</td>
<td>Spring package</td>
</tr>
<tr>
<td>3</td>
<td>Secondary arm</td>
</tr>
</tbody>
</table>

Repeat this action for the other 2 arm sets.

WARNING

- INCORRECT MOUNTED SPRINGS CAN JUMP AWAY.
- WEAR SUITABLE PROTECTIVE CLOTHING AND SAFETY GLASSES.
- NEVER PULL THE SPRINGS FURTHER APART THAN NECESSARY WHEN MOUNTING THE ARM ASSEMBLY ON THE PRIMARY ARM OR TCP BALL JOINTS.
- REPLACE SPRINGS AFTER OVERSTRETCHING.
4.2 Mount the arm assembly on the robot

For mounting, pull a secondary arm with his cup holder over the ball joint of the primary arm. Now pull the arms apart against the force of the spring in order to pull the second arm over the second ball joint of the primary arm. Then repeat this action for the TCP (see below picture).

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TCP - Tool Center Point</td>
</tr>
</tbody>
</table>

Repeat this action for the other 2 secondary arm assembly's. Now your robot mechanic is completely installed.
5. **Mounting the rotational axis on the cardan joint**

This section is applicable only to the models with rotational axis.

Please perform the following steps first.
- Extend the rotational axis to its entire length, then retract the same and check whether it is easy to operate or whether some resistance occurs

NOTE

A light irregular resistance is normal and caused by the manufacturing tolerances of the tubes. The axis is run in during the first 150 hours of operation. In case of problems, please check the axis for damage or contact your OMRON representative.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole for M5 mounting bolt</td>
</tr>
<tr>
<td>2</td>
<td>Rotational axis</td>
</tr>
</tbody>
</table>

Assembling to the cardan joint:

[Diagram of assembling to the cardan joint]
3. Installation

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cardan joint</td>
</tr>
<tr>
<td>2</td>
<td>Top connector rotational axis</td>
</tr>
</tbody>
</table>

- Put a drop of Loctite 243 on the supplied M5 bolt with washer
- Now attach the top connector to the cardan joint
- Tighten the M5 hexagon bolt with 9Nm

The rotational axis is now mounted.

6. Calibration

No every robot that is delivered is calibrated. If you want to calibrate the robot by yourself, a calibration tool is available (shown in the below picture). The calibration tool can be ordered as CR_AS-2279 for CR_UGD4_XL_HD and CR_UGD4_HD robots, or CR_AS-3062 for CR_UGD4_XS_HD robot.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration tool</td>
</tr>
</tbody>
</table>

The following steps must be carried out to put the three upper arms from the robot in the zero position. Please, see the below pictures:

- Remove all the 6 secondary arms
- Remove the 3 plastic covers from the primary arms
• Mount the temporary axis on the thread from the plastic cover

• Now place the calibration tool on the temporary axis
• Release the motor brake from the selected motor and push the upper arm with his ball joint against the calibration tool as shown in the above picture
• Now fix the motor brake from the selected motor
• Repeat the calibration steps for the other two primary arms
• Remove the tool

WARNING
• CALIBRATING THE ROBOT MUST BE CARRIED OUT BY QUALIFIED PROGRAMMING PERSONNEL ONLY, AS THIS REQUIRES AN EXCELLENT LEVEL OF KNOWLEDGE OF THE CONTROL SYSTEM.
• WHEN CARRYING OUT THE HOMING YOURSELF, THIS MUST BE CARRIED OUT EXACTLY IN THE WAY AND THE ORDER THAT THEY ARE DESCRIBED.

• Now all the primary arms are in zero position from the kinematic model
• Now put the encoder values from the servo motors in 0°
• Check that the angle indicated for the three motors is 0° (±0.1°)
• Your robot is now calibrated
7. Gripper interface

7.1 With rotational axis

The below picture shows the gripper connection sizes for the models with rotational axis according to ISO 9409-1-A31.5.

7.2 Without rotational axis

The below picture shows the gripper connection sizes for the models without rotational axis.

The design of the gripper that is mounted under the robot have great influence on the performance of the robot. Both the weight of the gripper and the distance of the center of gravity of the gripper to the TCP base point have negative influence on the final performance of the robot.

If you need to install cabling for the gripper, please follow the following steps:
- Mount the cables on the baseplate or frame, near the turning point from the primary arm on the gearbox
- Mount the cables on the primary arm, with ty-raps or clamping parts
- Keep a big loop at the hinge point from the primary and secondary arm
- Mount the cables on the secondary arm, with ty-raps or clamping parts
- Keep a big loop from the lowest mounting point at the secondary arm till the connection on the gripper
Chapter 4 Maintenance

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Periodic maintenance</td>
<td>4-1</td>
</tr>
<tr>
<td>1.1 Springs</td>
<td>4-1</td>
</tr>
<tr>
<td>1.2 Ball bearing cups</td>
<td>4-2</td>
</tr>
<tr>
<td>1.3 Rotational axis</td>
<td>4-2</td>
</tr>
<tr>
<td>2. Cleaning the robot</td>
<td>4-4</td>
</tr>
<tr>
<td>3. Spare parts</td>
<td>4-4</td>
</tr>
</tbody>
</table>
1. Periodic maintenance

Before working on the robot, please be ensured that the machine where the robot is built in, is totally switched off.

DANGER

- SWITCH OFF THE MACHINE (SYSTEM) WHERE THE ROBOT IS BUILT IN (E.G. WITH A PADLOCK) TO PREVENT IT FROM BEING SWITCHED ON AGAIN.
- LABEL THE MACHINE (SYSTEM) WITH A SIGN INDICATION THAT WORK IS IN PROGRESS. THIS SIGN MUST REMAIN IN PLACE, EVEN DURING TEMPORARY INTERRUPTIONS TO THE WORK.
- THE EMERGENCY STOP FROM THE MACHINE (SYSTEM) MUST REMAIN ACTIVE. IF SAFETY FUNCTIONS OR SAFEGUARDS ARE DEACTIVATED DURING MAINTENANCE OR REPAIR WORK, THEY MUST BE REACTIVATED IMMEDIATELY AFTER THE WORK IS COMPLETED.

1.1 Springs

How to maintain the springs:

- The springs has to be replaced every 3800 working hours or once a year
- When the robot is fall apart, check the springs on damages
- Only use springs delivered by OMRON, otherwise the guarantee will expire
- Replace springs after overstretching
- For spare parts, see Section 3 Spare parts in this chapter

WARNING

- INCORRECT MOUNTED SPRINGS CAN JUMP AWAY.
- WEAR SUITABLE PROTECTIVE CLOTHING AND SAFETY GLASSES.
- NEVER PULL THE SPRINGS FURTHER APART THAN NECESSARY WHEN MOUNTING THE ARM ASSEMBLY ON THE PRIMARY ARM OR TCP BALL JOINTS.

How to disassemble the springs:

- Disassemble the secondary arms from the robot
- Replace the springs
- For re-assembling the secondary arms, see Section 4 Assembling the secondary arms in Chapter 3
1.2 Ball bearing cups

The ball bearing cups have the same lifetime as the springs. We recommend to exchange these at the same time as the springs.

How to maintain the ball bearing cups:
• The ball bearing cups has to be replaced every 3800 working hours or once a year
• When the ball bearing cups make squeaking noises, take off the secondary arm assembly’s and clean the cups with pressed air
• Do not lubricate the ball bearing cups!

For instructions to replace the ball bearing cups, see below picture:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M5 bolt</td>
</tr>
</tbody>
</table>

• Screw an M5 bolt in the backside from the cup holder
• Now the ball bearing cup will come out

1.3 Rotational axis

The plain bearings on the rotational axis wear with time so that backlash starts to occur on the rotational axis. How fast the plain bearings become worn depends strongly on the following factors:
• The working path
• The payload
• The speed of the robot
• The rotation actions

When do I have to exchange the plain bearings?
• If there is a lot of play on the rotational axis
• Every 3000 working hours or once a year

For instructions to replace the plain bearings, see below picture:
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 x M5 bolt with washer</td>
</tr>
<tr>
<td>2</td>
<td>Bearing block</td>
</tr>
<tr>
<td>3</td>
<td>Rotation tube</td>
</tr>
</tbody>
</table>

- Unscrew the 4 x M5 bolt with washer from the cardan connector and the bearing block
- Remove the cardan connector and the bearing block

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cardan connector</td>
</tr>
<tr>
<td>2</td>
<td>Plain bearing</td>
</tr>
<tr>
<td>3</td>
<td>Bearing block</td>
</tr>
</tbody>
</table>

- Now you can exchange the 2 plain bearings
- For the other bearing block, you can repeat these steps
- To re-assemble the parts you can follow these steps in reverse direction
- Tighten the M5 bolts with 7 Nm and put a drip of Loctite 243 on the bolts

WARNING

- PLAIN BEARINGS HAS TO BE MOUNTED VERY CAREFULLY.
- WRONG MOUNTED PLAIN BEARINGS MAY DAMAGE.
- EXTEND THE ROTATIONAL AXIS TO ITS ENTIRE LENGTH, THEN RETRACT THE SAME AND CHECK WHETHER IT IS EASY TO OPERATE OR WHETHER SOME RESISTANCE OCCURS.
2. Cleaning the robot

Clean the robot by washing with soft cloth or sponge. Use soap or mild detergent and warm water followed by clear water rinse. For oil and grease stains use alcohol with soft cloth.

3. Spare parts

<table>
<thead>
<tr>
<th>Robot part</th>
<th>Description</th>
<th>Quantity per robot</th>
<th>OMRON Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CR_UGD4_XL_</td>
</tr>
<tr>
<td>Primary arm</td>
<td>1 x primary arm</td>
<td>3</td>
<td>CR_AS-2906</td>
</tr>
<tr>
<td></td>
<td>1 x primary arm seal</td>
<td>3</td>
<td>CR_CP-1068</td>
</tr>
<tr>
<td></td>
<td>1 x seal ring</td>
<td>3</td>
<td>CR_PT-05393</td>
</tr>
<tr>
<td></td>
<td>1 x primary arm cap</td>
<td>3</td>
<td>CR_PT-06774</td>
</tr>
<tr>
<td>Secondary arm</td>
<td>1 x secondary arm</td>
<td>6</td>
<td>CR_AS-2189</td>
</tr>
<tr>
<td></td>
<td>1 x secondary arm spring</td>
<td>6</td>
<td>CR_AS-2291</td>
</tr>
<tr>
<td></td>
<td>1 x ball joint cup</td>
<td>12</td>
<td>CR_PT-05291</td>
</tr>
<tr>
<td></td>
<td>1 x spring roll</td>
<td>24</td>
<td>CR_PT-05158</td>
</tr>
<tr>
<td>Primary arm & TCP</td>
<td>1 x ball joint</td>
<td>12</td>
<td>CR_AS-2907</td>
</tr>
<tr>
<td>Gearbox for primary arm</td>
<td>1 x gearbox</td>
<td>3</td>
<td>CR_GEARP-39</td>
</tr>
<tr>
<td>Calibration tool</td>
<td>1 x calibration tool</td>
<td>1</td>
<td>CR_AS-2279</td>
</tr>
</tbody>
</table>
Others

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity per robot</th>
<th>OMRON Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 3 m cable hose</td>
<td>1</td>
<td>CR_CP-1130-03M</td>
</tr>
<tr>
<td>1 x 5 m cable hose</td>
<td></td>
<td>CR_CP-1130-05M</td>
</tr>
<tr>
<td>1 x 10 m cable hose</td>
<td></td>
<td>CR_CP-1130-10M</td>
</tr>
<tr>
<td>1 x 60-65 mm hose clamp</td>
<td>2</td>
<td>CR_CP-1129</td>
</tr>
<tr>
<td>1 x cable entry plug</td>
<td>1</td>
<td>CR_AS-3130</td>
</tr>
</tbody>
</table>

Spare parts for models with rotational axis

<table>
<thead>
<tr>
<th>Robot part</th>
<th>Description</th>
<th>Quantity per robot</th>
<th>OMRON Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational axis</td>
<td>1 x cardan joint</td>
<td>2</td>
<td>CR_AS-2936</td>
</tr>
<tr>
<td></td>
<td>1 x spline part rotational axis</td>
<td>1</td>
<td>CR_AS-3011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CR_AS-3010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CR_AS-3008</td>
</tr>
<tr>
<td></td>
<td>1 x complete rotational axis</td>
<td>1</td>
<td>CR_AS-3015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CR_AS-3014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CR_AS-3012</td>
</tr>
<tr>
<td></td>
<td>1 x plain bearing</td>
<td>4</td>
<td>CR_CP-1013</td>
</tr>
<tr>
<td></td>
<td>1 x bearing 2</td>
<td>2</td>
<td>CR_CP-1026</td>
</tr>
<tr>
<td></td>
<td>1 x seal rotation</td>
<td>2</td>
<td>CR_SP-1071</td>
</tr>
<tr>
<td>Gearbox for rotational axis</td>
<td>1 x gearbox</td>
<td>1</td>
<td>CR_GEARP-14</td>
</tr>
<tr>
<td>TCP - Tool Center Point</td>
<td>1 x gripper flange</td>
<td>1</td>
<td>CR_AS-2976</td>
</tr>
<tr>
<td></td>
<td>1 x TCP</td>
<td>1</td>
<td>CR_AS-2169</td>
</tr>
</tbody>
</table>
Maintenance

4-6

Spare parts for models without rotational axis

<table>
<thead>
<tr>
<th>Robot part</th>
<th>Description</th>
<th>Quantity per robot</th>
<th>OMRON Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP - Tool Center Point</td>
<td>1 x TCP</td>
<td>1</td>
<td>CR_AS-2181</td>
</tr>
<tr>
<td></td>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Kinematics</td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Workspace</td>
<td>5-2</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Software limits</td>
<td>5-3</td>
<td></td>
</tr>
</tbody>
</table>
1. **Kinematics**

The kinematics parameters for the CR_UGD4_HD robots are shown below. Set these parameters corresponding to the controller settings.

WARNING

IF THE KINEMATICS PARAMETERS ARE NOT SET PROPERLY, THIS MAY CAUSE THE ROBOT TO MALFUNCTION. SO, BE SURE TO SET THESE PARAMETERS CORRECTLY.

Kinematics parameters

![Diagram of robot kinematics parameters]

CR_UGD4_XL_HD

- **Rf:** 200 mm Distance (radius) from the center of the fixed frame to the motor of the axis
- **Rm:** 50 mm Distance (radius) from the center of the moving frame to the connection point of Link 2
- **Lf:** 420 mm Length of Link 1
- **Lm:** 950 mm Length of Link 2

CR_UGD4_HD

- **Rf:** 200 mm Distance (radius) from the center of the fixed frame to the motor of the axis
- **Rm:** 50 mm Distance (radius) from the center of the moving frame to the connection point of Link 2
- **Lf:** 320 mm Length of Link 1
- **Lm:** 850 mm Length of Link 2

CR_UGD4_XS_HD

- **Rf:** 200 mm Distance (radius) from the center of the fixed frame to the motor of the axis
- **Rm:** 50 mm Distance (radius) from the center of the moving frame to the connection point of Link 2
- **Lf:** 220 mm Length of Link 1
- **Lm:** 600 mm Length of Link 2
2. **Workspace**

The workspace parameters for the CR_UGD4_HD robots are shown below. Set these parameters corresponding to the controller settings.

WARNING

IF THE WORKSPACE PARAMETERS ARE NOT SET PROPERLY, THIS MAY CAUSE THE ROBOT TO MALFUNCTION. SO, BE SURE TO SET THESE PARAMETERS CORRECTLY.

Workspace parameters

![Diagram of workspace parameters](image)

CR_UGD4_XL_HD
- \(Z_u + \text{offset}\): -760.5 mm Distance from the Z-axis origin position to the tool flange
- \(R_{cy}\): 650 mm Radius of the cylinder
- \(H_{cy}\): 250 mm Height of the cylinder
- \(R_{co}\): 435 mm Radius of the frustum cone of underside
- \(H_{co}\): 150 mm Height of the frustum cone

CR_UGD4_HD
- \(Z_u + \text{offset}\): -660.5 mm Distance from the Z-axis origin position to the tool flange
- \(R_{cy}\): 550 mm Radius of the cylinder
- \(H_{cy}\): 250 mm Height of the cylinder
- \(R_{co}\): 335 mm Radius of the frustum cone of underside
- \(H_{co}\): 150 mm Height of the frustum cone

CR_UGD4_XS_HD
- \(Z_u + \text{offset}\): -478.5 mm with rotational axis / -447.5 mm without rotational axis Distance from the Z-axis origin position to the tool flange
- \(R_{cy}\): 325 mm Radius of the cylinder
- \(H_{cy}\): 200 mm Height of the cylinder
- \(R_{co}\): 203.75 mm Radius of the frustum cone of underside
- \(H_{co}\): 70 mm Height of the frustum cone
3. Software limits

The software limits for the CR_UGD4_HD robots are shown below.

WARNING

IF THE α-, β-, OR γ-AXIS SOFT LIMIT IS SET INCORRECTLY, THE ARM MAY COLLIDE WITH THE ROBOT BASE OR BASE PREPARED BY THE USER, CAUSING BREAKAGE. SO, BE SURE TO SET THE SOFT LIMITS CORRECTLY.

 Mimix direction soft limit
[CR_UGD4_XL_HD: -34°]
[CR_UGD4_HD/CR_UGD4_XS_HD: -47°]

 Plus direction soft limit
[CR_UGD4_XL_HD: 93°]
[CR_UGD4_HD: 99°]
[CR_UGD4_XS_HD: 104°]
Chapter 6 Specifications

Contents

1. **Basic specifications** 6-1
 1.1 Cycle time 6-2

2. **External view and dimensions** 6-3
 2.1 CR_UGD4_XL_HD 6-3
 2.2 CR_UGD4_HD 6-4
 2.3 CR_UGD4_XS_HD 6-5

3. **Design specifications** 6-6
 3.1 Occupation area of robot 6-6
 3.2 Software design 6-7
 3.2.1 Dimensions and limits 6-8
1. Basic specifications

<table>
<thead>
<tr>
<th>Working volume</th>
<th>CR_UDG4_</th>
<th>CR_UDG4_</th>
<th>CR_UDG4_</th>
<th>CR_UDG4_</th>
<th>CR_UDG4_</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y axis Stroke</td>
<td>XL_R HD</td>
<td>XL_NR HD</td>
<td>R HD</td>
<td>NR HD</td>
<td>XS R HD</td>
</tr>
<tr>
<td>Z axis Stroke</td>
<td>Ø1300mm</td>
<td>Ø1100mm</td>
<td>Ø650mm</td>
<td>250mm (max. Ø1300mm)/400mm (center Ø870mm)</td>
<td>250mm (max. Ø1100mm)/400mm (center Ø670mm)</td>
</tr>
<tr>
<td>θ axis Rotation range</td>
<td>±180° (default setting, it can be changed)</td>
<td>±180° (default setting, it can be changed)</td>
<td>±180° (default setting, it can be changed)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Servo motor</th>
<th>Arm 1, 2, 3</th>
<th>Rotational axis 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y, Z axis</td>
<td>1000W</td>
<td>750W</td>
</tr>
<tr>
<td>Rotational axis 4</td>
<td>750W</td>
<td>750W</td>
</tr>
<tr>
<td>θ axis</td>
<td>750W</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>X, Y, Z axis</td>
<td>±0.2mm</td>
</tr>
<tr>
<td>0 axis</td>
<td>±0.3°</td>
<td>±0.3°</td>
</tr>
<tr>
<td>Maximum through-put</td>
<td>120 CPM</td>
<td>150 CPM</td>
</tr>
<tr>
<td>Maximum payload</td>
<td>2kg</td>
<td></td>
</tr>
<tr>
<td>Gearbox ratio</td>
<td>X, Y, Z axis</td>
<td>1:31</td>
</tr>
<tr>
<td>0 axis</td>
<td>1:10</td>
<td>1:10</td>
</tr>
<tr>
<td>θ axis torque limitation</td>
<td>7Nm</td>
<td></td>
</tr>
<tr>
<td>Travel limit</td>
<td>Soft limit</td>
<td></td>
</tr>
<tr>
<td>Noise level</td>
<td>< 68 dB (A)</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>5°C to 45°C</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Max. 90%</td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>1P69K</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100kg</td>
<td></td>
</tr>
</tbody>
</table>

*1: This is the value at a constant ambient temperature.
*2: With 0.1kg payload. When reciprocating 305mm in horizontal and 25mm in vertical directions.
*3: CPM: Cycle per minutes. Check the note 2 for the cycle definition.

The encoder, power and brake cables are included with the Delta robot. The last numbers of the Delta robot model code indicate the length of the cables:

<table>
<thead>
<tr>
<th>Model</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR_UDG4_xx_xx_HD3</td>
<td>3 m</td>
</tr>
<tr>
<td>CR_UDG4_xx_xx_HD5</td>
<td>5 m</td>
</tr>
<tr>
<td>CR_UDG4_xx_xx_HD10</td>
<td>10 m</td>
</tr>
<tr>
<td>CR_UDG4_xx_xx_HD15</td>
<td>15 m</td>
</tr>
<tr>
<td>CR_UDG4_xx_xx_HD20</td>
<td>20 m</td>
</tr>
</tbody>
</table>
1.1 Cycle time

<table>
<thead>
<tr>
<th>P&P path</th>
<th>Payload</th>
<th>CR_UGD4_XL_HD cycle time</th>
<th>CR_UGD4_HD cycle time</th>
<th>CR_UGD4_XS_HD cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 x 305 x 25 mm (Z1 x Y x Z2)</td>
<td>0.1 kg</td>
<td>0.48 s</td>
<td>0.41 s</td>
<td>0.37 s</td>
</tr>
<tr>
<td></td>
<td>0.5 kg</td>
<td>0.56 s</td>
<td>0.52 s</td>
<td>0.44 s</td>
</tr>
<tr>
<td></td>
<td>1 kg</td>
<td>0.64 s</td>
<td>0.61 s</td>
<td>0.56 s</td>
</tr>
</tbody>
</table>
2. External view and dimensions

2.1 CR_UGD4_XL_HD

Gripper dimensions
2.2 CR_UGD4_HD

Specifications

Gripper dimensions

680 120º

16,5 3 x 125

535 180 60 30º

1100 535 30

20 H7

31,5 40

5H7 THRU

4,2 THRU

M5-6H THRU
Gripper dimensions

680
3 x \(\varnothing 16.5 \)

76.5 with rotational axis
71.5 without rotational axis

748.5 with rotational axis
717.5 without rotational axis

38.5 with rotational axis
7.5 without rotational axis

50

40

31.5

4,2 THRU

50

50

310

20 H7

4 x \(5 \) THRU

5H7 THRU

\(\varnothing 40 \) THRU
3. Design specifications

3.1 Occupation area of robot

If the robot is integrated into the machine it must be considered what the reach is of all robot parts to prevent collision with other parts in the machine.

When the TCP moves to its outer positions, the primary and secondary arms can rise above the baseplate, take care that no mechanical obstructions are in the areas indicated in the below figure.

WARNING

IF MECHANICAL OBSTRUCTIONS ARE IN THE INDICATED AREA, THE ROBOT OR THE OTHER MACHINE PARTS COULD BE DAMAGED.
3.2 Software design

The arm lengths and pitch circles of the rotation points are shown in the below picture.

Upper arm length
- CR_UDG4_XL_HD: 420 mm
- CR_UDG4_HD: 320 mm
- CR_UDG4_XS_HD: 220 mm

Lower arm length
- CR_UDG4_XL_HD: 950 mm
- CR_UDG4_HD: 850 mm
- CR_UDG4_XS_HD: 600 mm

Flange offset
- CR_UDG4_XL_HD/CR_UDG4_HD: 44.5 mm
- CR_UDG4_XS_HD: 38.5 mm with rotational axis / 7.5 mm without rotational axis

Upper arm rotation points circle diameter 400 mm

Lower arm rotation points circle diameter 100 mm
3.2.1 Dimensions and limits

<table>
<thead>
<tr>
<th>Description</th>
<th>CR_UGD4_XL_HD</th>
<th>CR_UGD4_HD</th>
<th>CR_UGD4_XS_HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative software limit</td>
<td>-34°</td>
<td>-47°</td>
<td></td>
</tr>
<tr>
<td>Positive software limit</td>
<td>93°</td>
<td>99°</td>
<td>104°</td>
</tr>
<tr>
<td>Tb-z (top baseplate to zero position)</td>
<td>270 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-tw (zero position to ball bearings)</td>
<td>716 mm</td>
<td>616 mm</td>
<td>440 mm</td>
</tr>
<tr>
<td>Flange offset</td>
<td>44.5 mm</td>
<td></td>
<td>38.5 mm with rotational axis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5 mm without rotational axis</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Revision history

A manual revision code appears as a suffix to the catalog number on the front cover manual.

Cat. No. I199E-EN-04C

The following table outlines the changes made to the manual during each revision.

<table>
<thead>
<tr>
<th>Revision code</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>May 2015</td>
<td>Original production</td>
</tr>
<tr>
<td>01A</td>
<td>July 2016</td>
<td>Cable hose and hose clamp accessories were added to spare parts section</td>
</tr>
<tr>
<td>02</td>
<td>May 2017</td>
<td>New model CR_UGD4_XL_HD was included. Spare parts section was updated. Calibration section was updated. Gripper interface section was updated.</td>
</tr>
<tr>
<td>02A</td>
<td>June 2017</td>
<td>Cable entry plug was added to spare parts section</td>
</tr>
<tr>
<td>02B</td>
<td>August 2017</td>
<td>ISO gripper flange for robot models with rotational axis was added to spare parts section</td>
</tr>
<tr>
<td>02C</td>
<td>September 2017</td>
<td>Basic specifications section was updated</td>
</tr>
<tr>
<td>03</td>
<td>December 2017</td>
<td>New model CR_UGD4_XS_HD was included. Spare parts section was updated. Mounting the rotational axis on the cardan joint section was updated. Periodic maintenance for rotational axis section was updated</td>
</tr>
<tr>
<td>03A</td>
<td>March 18</td>
<td>Gripper interface dimensions were modified</td>
</tr>
<tr>
<td>03B</td>
<td>April 2018</td>
<td>Calibration tool picture was updated</td>
</tr>
<tr>
<td>04</td>
<td>June 2018</td>
<td>Spare part references were modified</td>
</tr>
<tr>
<td>04A</td>
<td>February 2019</td>
<td>Spare part references were corrected</td>
</tr>
<tr>
<td>04B</td>
<td>July 2019</td>
<td>Spare part mistakes were corrected</td>
</tr>
<tr>
<td>04C</td>
<td>March 2020</td>
<td>Torque limitation of rotational axis was modified</td>
</tr>
</tbody>
</table>