

Machine Automation Controller NJ-series

EtherCAT Connection Guide

OMRON Corporation

GX-series Analog I/O Terminal

Network
Connection
Guide

Table of Contents

1. Re	lated Manuals	1
2. Ter	rms and Definition	2
3. Re	marks	3
4. Ov	erview	5
5. Ap	plicable Devices and Support Software	5
5.1.	Applicable Devices	5
5.2.	Device Configuration	6
6. Eth	nerCAT Settings	7
6.1.	EtherCAT Communications Settings	7
6.2.	Allocating the Global Variables	7
7. Co	nnection Procedure	8
7.1.	Work Flow	8
7.2.	Setting Up the Analog I/O Terminal	9
7.3.	Setting Up the Controller	11
7.4.	Connection Status Check	19
8. Init	tialization Method	23
8.1.	Controller	23
9. Re	vision History	24

1. Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device which is used in the system.

Cat.No.	Model	Manual name	
W500	NJ501-[][][][]	NJ-series CPU Unit Hardware User's Manual	
W501	NJ501-[][][][]	NJ-series CPU Unit Software User's Manual	
W505	NJ501-[][][][]	NJ-series CPU Unit Built-in EtherCAT Port User's Manual	
W504	SYSMAC-SE2[][][]	Sysmac Studio Version 1 Operation Manual	
W488	GX-series	EtherCAT Slave Units User's Manual	

2. Terms and Definition

Terms	Explanation and Definition
PDO	This method is used for cyclic data exchange between the master unit
Communications	and the slave units.
(Communications	PDO data (i.e., I/O data that is mapped to PDOs) that is allocated in
using Process Data	advance is refreshed periodically each EtherCAT process data
Objects)	communications cycle (i.e., the period of primary periodic task).
	The EtherCAT port built into the NJ-series CPU Unit uses process data
	communications for commands to refresh I/O data in a fixed control
	period, including I/O data for EtherCAT Slave Units, and the position
	control data for the Servomotors.
	Variables are used to access from the NJ-series CPU Unit in the
	following ways.
	•With device variables for EtherCAT slave I/O
	•With Axis Variables for Servo Drive and encoder input slaves to which
	assigned as an axis
SDO	This method is used to read and write the specified slave unit data from
Communications	the master unit when required.
(Communications	The EtherCAT port built into the NJ-series CPU Unit uses SDO
using Service Data	communications for commands to read and write data, such as for
Objects)	parameter transfers, at specified times.
	You can read/write the following specified slave data with the
	EC_CoESDORead (Read CoE SDO) instruction or the
	EC_CoESDOWrite (Write CoE SDO) instruction.
	•SDO data in slave units (parameters, error information, etc.)
Slave Unit	There are various types of slaves such as Servo Drives that handle
	position data and I/O terminals that control the bit signals.
	The slave receives output data sent from the master, and transmits input
	data to the master.
Node address	An address to identify the unit connected to the EtherCAT network.
ESI file	The ESI files contain information unique to the EtherCAT slaves in XML
(EtherCAT Slave	format.
Information file)	Install an ESI file into the Sysmac Studio, to easily allocate slave process
	data and make other settings.

3. Remarks

- (1) Understand the specifications of devices which are used in the system. Allow some margin for ratings and performance. Provide safety measures, such as installing safety circuit in order to ensure safety and minimize risks of abnormal occurrence.
- (2) To ensure system safety, always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device which is used in the system.
- (3) The users are encouraged to confirm the standards and regulations that the system must conform to.
- (4) It is prohibited to copy, to reproduce, and to distribute a part of or whole part of this document without the permission of OMRON Corporation.
- (5) This document provides the latest information as of February 2013. The information contained in this document is subject to change for improvement without notice.

About Intellectual Property Right and Trademarks

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Company names and product names in this document are the trademarks or registered trademarks of their respective companies.

The following notation is used in this document.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Additionally, there may be severe property damage.

Caution

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

The filled circle symbol indicates operations that you must do.

The specific operation is shown in the circle and explained in text.

This example shows a general precaution for something that you must do.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure using the product safely.

Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Provides useful information.

Additional information to increase understanding or make operation easier.

4. Overview

This document describes the procedure for connecting the Analog I/O Terminal (GX Series) of OMRON Corporation (hereinafter referred to as OMRON) to the NJ-series Machine Automation Controller (hereinafter referred to as Controller) on EtherCAT and provides the procedure for checking their connection.

Refer to Section 7 Connection Procedure to understand the setting method and key points to connect the devices via EtherCAT.

5. Applicable Devices and Support Software

5.1. Applicable Devices

The following devices can be connected.

Manufacturer	Name	Model	Version
OMRON	NJ5-series CPU Unit	NJ501-[][][][]	-
OMRON	Analog I/O Terminal	GX-AD0471 GX-DA0271	1.1

Additional Information

As applicable devices above, the devices listed in Section 5.2. are actually used in this document to check the connection. When using devices not listed in Section 5.2, check the connection by referring to the procedure in this document.

Additional Information

This document describes the procedure to establish the network connection. It does not provide information about operation, installation nor wiring method of each device.

For details on the above products (other than communication connection procedures), refer to the manuals for the corresponding products or contact your OMRON representative.

5.2. Device Configuration

The hardware components to reproduce the connection procedure of this document are as follows.

Manufacturer	Name	Model	Version
OMRON	CPU Unit	NJ501-1500	
	(Built-in EtherCAT port)		
OMRON	Power Supply Unit	NJ1W-PA3001	
OMRON	Sysmac Studio	SYSMAC-SE2[][][]	Ver.1.00
-	Personal computer (OS:Windows7)		
-	USB cable		
	(USB 2.0 type B connector)		
OMRON	Ethernet cable	XS5W-T421-[]M[]-K	
	(with industrial Ethernet connector)		
OMRON	Analog I/O Terminal	GX-DA0271	V1.1

Precautions for Correct Use

The connection line of EtherCAT communication cannot be shared with other network, such as Ethernet or EtherNet/IP.

The switching hub for Ethernet cannot be used for EtherCAT.

Please use the cable of category 5 or higher, double-shielded with aluminum tape and braided shielding and the shielded connector of category 5 or higher.

Additional Information

For information on the specifications of the Ethernet cable and network wring, refer to *Section 4 EtherCAT Network Wiring* in the *NJ-series CPU Unit Built-in EtherCAT Port User's Manual* (Cat. No. W505).

Additional Information

The system configuration in this document uses USB for the connection between the personal computer and the NJ-series CPU Unit. For information on how to install a USB driver, refer to *A-1 Driver Installation for Direct USB Cable Connection* of the *Sysmac Studio Operation Manual* (Cat.No. W504).

6. EtherCAT Settings

This section provides specifications such as communications parameters and variable names that are set in this document.

6.1. EtherCAT Communications Settings

The following is the setting of the destination device.

	GX-DA0271
Node address	01

6.2. Allocating the Global Variables

The device variables of the destination device are allocated to the Controller's global variables.

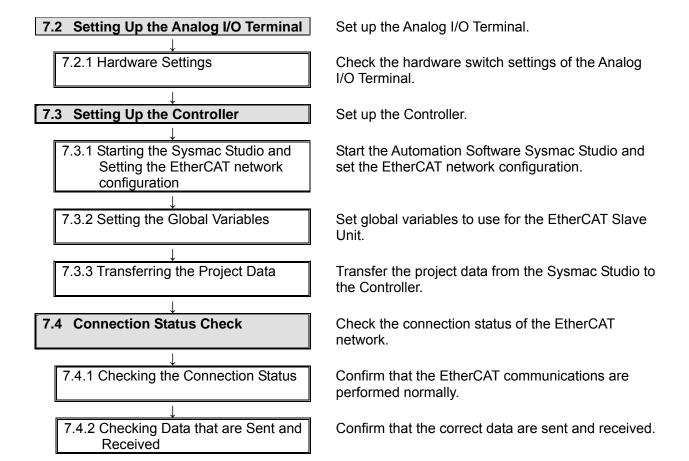
The relationship between the device data and the global variables is shown below.

Output area (Controller → Destination device)

Destination device data	Global variable name	Data type
CH1 Analog output value	E001_CH1_Output_16bit	INT
CH2 Analog output value	E001_CH2_Output_16bit	INT

Details of the status allocation (Controller ← Destination device)

Des	stination device data	Global variable name	Data type
Sysmac Error Status		E001_Sysmac_Error_Status	BYTE
	Error information at	E001 Observation	BOOL
	observation level	Edd1_Obscrvation	DOOL
	Error information at minor	E001 Minor Fault	BOOL
	fault level	E001_iviii101_Fauit	BOOL


7. Connection Procedure

This section describes how to connect the Controller via EtherCAT.

This document explains the procedures for setting up the Controller and Analog I/O Terminal from the factory default setting. For the initialization, refer to Section 8 Initialization Method.

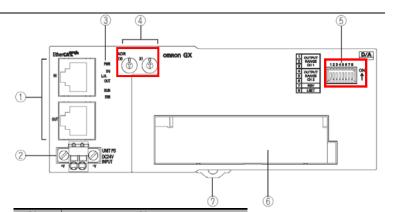
7.1. Work Flow

The following is the procedure for connecting to the EtherCAT.

7.2. Setting Up the Analog I/O Terminal

Set up the Analog I/O Terminal.

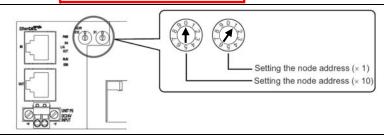
7.2.1. Hardware Setting


Check the hardware switch settings of the Analog I/O Terminal.

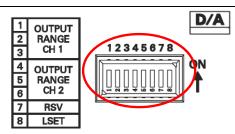
Precautions for Correct Use

Make sure that the power supply is OFF when you perform the settings.

- 1 Confirm that the power supply to the Analog I/O Terminal is OFF.
 - *If the power supply is turned ON, settings may not be applicable as described in the following procedure.
- 2 Refer to the right figure and check the hardware switches.



No.	Name	
(1)	Communications connectors	
(2)	Unit power supply connector	
(3)	Status indicators	
(4)	Node Address setting Switches	
(5)	Output range setting Switches	

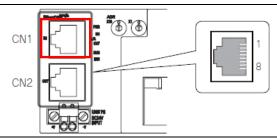

3 Set the node address switches as follows.

x10: 0, x1: 1

*Set the node address to "01".

Turn OFF pins 1 to 7 of the output range setting switch (set them to bottom side), and turn ON pin 8 (set it to top side).

Pin No.	Setting	Specification	
1			
2	Setting of output CH1 range		
3		Set by combination of DIP switches (see the	
4		next table)	
5 Setting of output CH2 rang	Setting of output CH2 range	4388	
6			
7	Always OFF	Make sure to keep it OFF. The operation cannot be guaranteed when it is set to ON.	
8	Output space cetting mathed	OFF: Setting by SDO communications	
0	Output range setting method	ON: Setting by these switches (Pin1 to Pin6)	

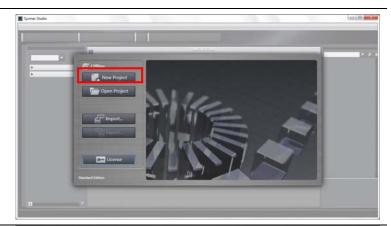

Setting of output CH1 range (Pin1 to Pin3)

Output range	Pin1	Pin2	Pin3
0 to 5 V	OFF	OFF	OFF
1 to 5 V	ON	OFF	OFF
0 to 10 V	OFF	ON	OFF
-10 to +10 V	ON	ON	OFF
4 to 20 mA	OFF	OFF	ON

• Setting of output CH2 range (Pin4 to Pin6)

Output range	Pin4	Pin5	Pin6
0 to 5 V	OFF	OFF	OFF
1 to 5 V	ON	OFF	OFF
0 to 10 V	OFF	ON	OFF
-10 to +10 V	ON	ON	OFF
4 to 20 mA	OFF	OFF	ON

Connect the Ethernet cable to communication connector CN1 and turn ON the power supply.


7.3. Setting Up the Controller

Set up the Controller.

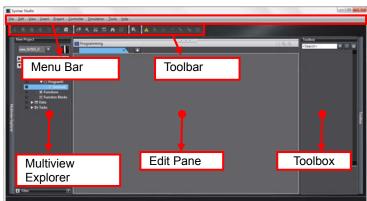
7.3.1. Starting the Sysmac Studio and Setting the EtherCAT Network Configuration

Start the Automation Software Sysmac Studio and set the EtherCAT network configuration. Install the software and USB driver beforehand.

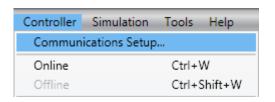
1 Start the Sysmac Studio. Click the **New Project** Button.

The Project Properties Dialog Box is displayed. Click the **Create** Button.

*In this document, New Project is set as the project name.

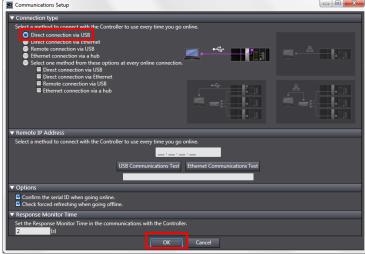


The New Project Pane is displayed.


called Edit Pane.

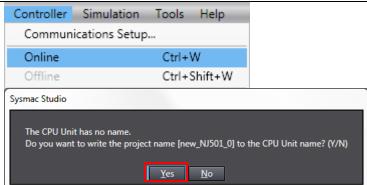
There are Menu Bar and Toolbar in the upper part of the pane.

The left pane is called Multiview Explorer, the right pane is called Toolbox and the middle pane is



4 Select *Communications Setup* from the Controller Menu.

The Communications Setup Dialog Box is displayed. Select the *Direct connection via USB* Option in the Connection Type Field.

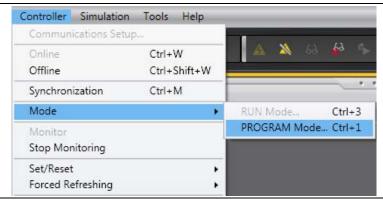

Click the **OK** Button.



6 Select *Online* from the Controller Menu.

A confirmation dialog is displayed. Click the **Yes** Button. *A displayed dialog depends on the status of the Controller used. Select the **Yes** Button or other button to proceed with the processing.

When an online connection is established, a yellow bar is displayed on the top of the Edit Pane.



Additional Information

For details on the online connections to a Controller, refer to Section 5 Going Online with a Controller in the Sysmac Studio Version 1.0 Operation Manual (Cat. No. W504).

Select *Mode* - *PROGRAM Mode* from the Controller Menu.

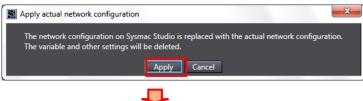
A confirmation dialog is Sysmac Studio displayed. Click the **Yes** Button. Make sure a Controller stop will cause no problem. Do you want to change to PROGRAM Mode? (Y/N) Yes Νo Confirm that the controller status on the Toolbox is changed to the Controller Status $\mathbb{Z}_{\mathbb{Z}}$ PROGRAM mode. 192 169 250 1 ONLINE • ERR/ALM PROGRAM mode Double-click EtherCAT under **New Project** Configurations and Setup in the Multiview Explorer. new_NJ501_0 Or, right-click **EtherCAT** under Configurations and Setup and ▼ Configurations and Setup select *Edit*. The EtherCAT Tab Page is 11 displayed in the Edit Pane. Configurations and Setup EtherCAT Node Address|Network configuration | Master Right-click the Master Icon and Configurations and Setup 12 select Compare and Merge EtherCAT with Actual Network Node Address|Ne Configuration. Write Slave Node Address Compare and Merge with Actual Network Configuration Get Slave Serial Numbers Display Diagnosis/Statistics Information Display Production Information Display Packet Monitor

Display ESI Library

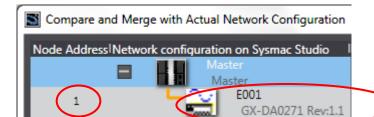
Get information

A screen is displayed stating "Get information is being

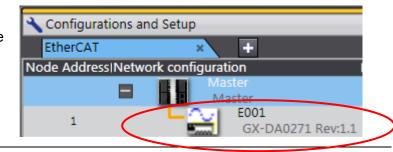
executed".


7. Connection Procedure

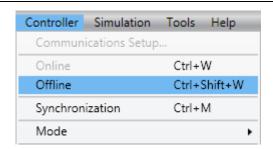
The Compare and Merge with 13 **Actual Network Configuration** Pane is displayed. Node address 1 and GX-DA0271 Rev.1.1 are added to the actual network configuration of the comparison result. Click the **Apply actual network**


configuration Button.

Ш


A confirmation dialog box is 14 displayed. Click the Apply Button.

Confirm that node address 1 and E001 GX-DA0271 Rev.1.1 are added to the network configuration of the Sysmac Studio. Click the Close Button.

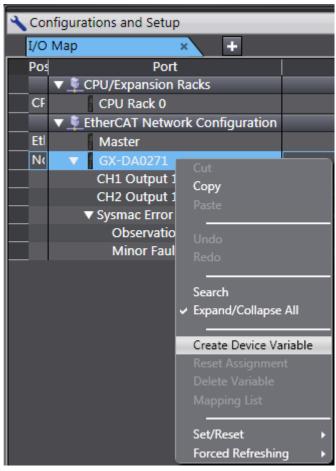

Node address 1 and E001 GX-DA0271 Rev:1.1 are added to the EtherCAT Tab Page in the Edit Pane.

7.3.2. Setting Global Variables

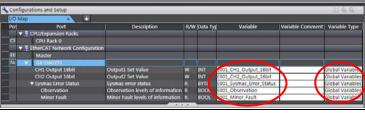
Set global variables to use for the EtherCAT Slave Unit.

1 Select **Offline** from the Controller Menu.

Double-click I/O Map under Configurations and Setup on the Multiview Explorer, or right-click it and select *Edit*.



3 The I/O Map Tab Page is displayed on the Edit Pane.


Click a column under Variable to enter a new variable.

Right-click the row for Node1 and GX-DA0271. Then, select **Create Device Variable**.

The Variable names and Variable Types are automatically set.

Additional Information

The device variable names are created automatically from a combination of the device names and the I/O port names.

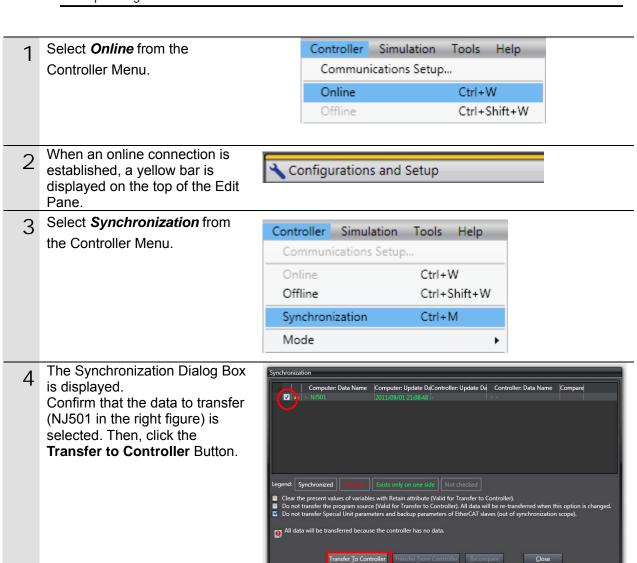
For slave units, the default device names start with an "E" followed by a sequential number starting from "001".

Additional Information

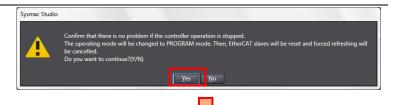
A device variable name is automatically created for each slave unit in the example above. A name can also be automatically created for each I/O port.

Also, you can set any device variables.

7.3.3. Transferring Project Data


Transfer the project data from the Sysmac Studio to the Controller.

M WARNING


Always confirm safety at the destination node before you transfer a user program, configuration data, setup data, device variables, or values in memory used for CJ-series Units from the Sysmac Studio.

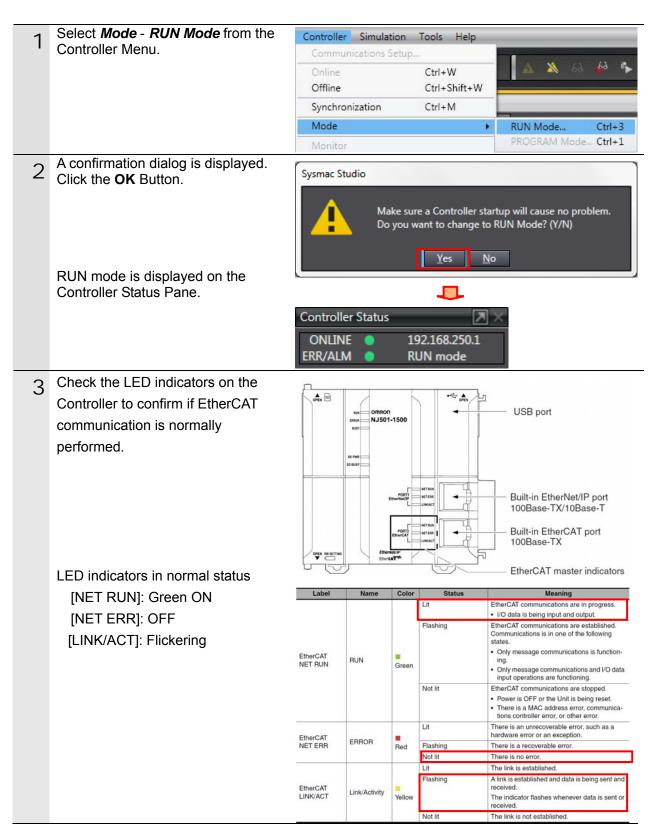
The devices or machines may perform unexpected operation regardless of the operating mode of the CPU Unit.

A confirmation dialog is displayed. Click the **Yes** Button.

7. Connection Procedure

A screen stating "Synchronizing" Synchronizing... is displayed. 4% Confirm that the synchronized data is displayed with the color Computer: Data Name | Computer: Update Da Controller: Update Da | Controller: specified by "Synchronized", and that a message is displayed stating "The synchronization process successfully finished". Legend Synchronized Exists only on one side Not checked

Clear the present values of variables with Retain attribute (Valid for Transfer to Controlled). It data will be re-to Do not transfer the program source (Valid for Transfer to Controlled). All data will be re-to Do not transfer Special Unit parameters and backup parameters of EtherCAT slaves (out If there is no problem, click the Close Button. *If the synchronization fails, Transfer To Controller Transfer From Controller Recompare Close check the wiring and repeat the procedure described in this

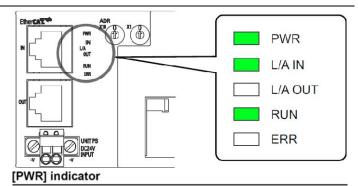

section.

7.4. Connection Status Check

Check the connection status of the EtherCAT network.

7.4.1. Checking the Connection Status

Confirm that the EtherCAT communications are performed normally.


Check the LED indicators on the Analog I/O Terminal.

LED indicators in normal status

[PWR]: Green ON [L/A IN]: Flickering [RUN]: Green ON [ERR]: OFF

The LED indicators flash at the same timing as those of the

Controller.

Indicates the unit power supply state.

Color	State	Contents	
Green	OFF	Unit power OFF state	
	ON	The unit power (24 VDC) is supplied to the Slave Unit.	

[L/A IN] indicator

Indicates the communication state (input side).

Color	State	te Contents Link not established in physical layer	
	OFF		
Green	Flickering	In operation after establishing link	
	ON	Link established in physical layer	

[RUN] indicator

It indicates the operation state.

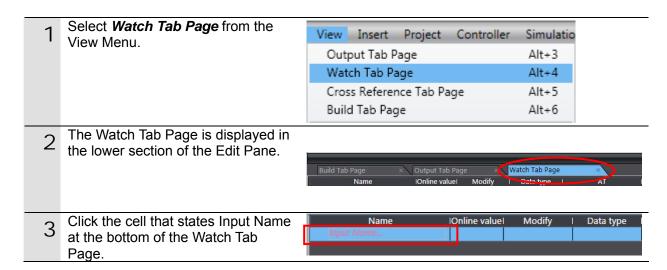
Color	OFF State	Contents	
		Init state	
Croon	Blinking	Pre-Operational state	
Green	Single flash	Safe-Operational state	
	ON	Operational state	

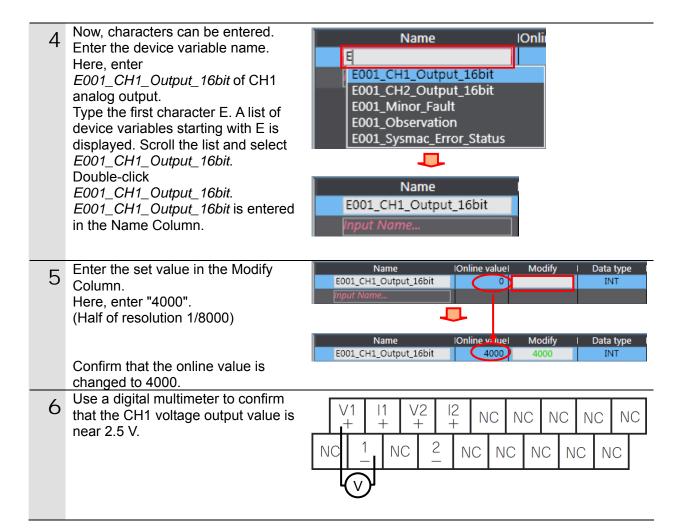
For details on each state, refer to "5-3 Communications State Transitions" in page 5 - 4.

[ERR] indicator

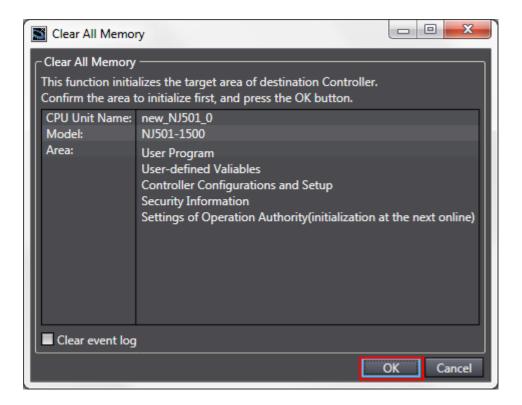
It indicates the information of an error.

Color	State	Contents	
Red	OFF	No error	
	Diinking	Communications setting error	
	Single flash	Synchronization error or communications data error	
	Double flash	Application WDT timeout	
	Flickering	Boot error	
	ON	PDI WDT timeout	


7.4.2. Checking Data That Are Sent and Received


Confirm that the correct data are sent and received.

Sufficiently confirm safety before you change the values of variables on a Watch Tab Page when the Sysmac Studio is online with the CPU Unit. Incorrect operation may cause the devices that are connected to Output Units to operate regardless of the operating mode of the Controller.


8. Initialization Method

This document explains the setting procedure from the factory default setting.

If the device settings have been changed from the factory default setting, some settings may not be applicable as described in this procedure.

8.1. Controller

To initialize the settings of the Controller, select *Clear All Memory* from the Controller Menu of the Sysmac Studio.

9. Revision History

Revision code	Date of revision	Revision reason and revision page
01	Feb. 28, 2013	First edition

OMRON Corporation Industrial Automation Company

Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V. Wegalaan 67-69-2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC One Commerce Drive Schaumburg, IL 60173-5302 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 201H All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. P518-E1-01

0911(-)