Compact Non-Contact Door Switch/Flexible Safety Unit
D40A/G9SX-NS

Electronic Detection Mechanism for Better Stability in Non-contact Door Switch Operation

Be sure to read the “Safety Precautions” on page 24 and the “Precautions for All Safety Door Switches”.

Features

Easy-to-see 2-Color Indicators
Switch status is easy to see at a glance with these red/yellow LED indicators.

- Red: Open door detected
- Yellow: Closed door detected
- Not lit: Power OFF or failure

Small Actuator
An actuator that is smaller than the switch saves space, even inside the door. Even when mounted with an L-bracket, the actuator’s height will not hinder installation or operation.

Mount from Either Side
Mount from whichever side provides the easiest wiring path to enable mounting to all types of doors.

Connect Up to 30 Switches to a Single Controller
Reduce costs by connecting up to 30 Switches to a single Controller.
Solves Conventional Switch Issues to Provide Stable Detection

Issue 1 The Switch does not accurately detect the door when it is closed slowly, resulting in an error.

![Diagram of conventional switch with door closed slowly]

An error can occur if the door is closed slowly with conventional switches.

Solution 1 Conventional Switches

- Stable Detection with the D40A's New System
 - Detects slow lateral operation.
 - Detects slow rotating operation.

- The D40A does not use reed switches and provides stable detection with electronic switches.

Issue 2 It is nearly impossible to tell which door is open in a multi-door application.

If an error occurs...

- The system cannot be started because the Controller has turned OFF the output even though all doors appear to be closed.
- It's impossible to tell if there is a door open or if an error has occurred.
- All doors must be opened and closed before operation can be started.

Solution 2

With the D40A...

The auxiliary outputs can be used to easily indicate which door is open. And with two-color indicators, mounting adjustments are also easy. The D40A is the first Non-contact Door Switch to combine 2-color indicators, auxiliary outputs, and 30-switch connection capacity, allowing you to create a better safety environment.
Two Types of Controller to Solve Productivity, Expandability, and Maintenance Issues

The G9SX-NS and G9SX-NSA are designed specifically for use with the D40A, and with the G9SX-NSA you can also connect mechanical safety door switches. Among other features, these Controllers support logical AND connections that enable partial stops. These Controllers make the most of D40A Switches.

Two Different Controllers

G9SX-NS

- Logical AND connection input
- D40A input
- Two instantaneous safety outputs
- Logical AND connection output

G9SX-NSA

- Logical AND connection input
- D40A plus mechanical safety door switch input, channel 1 or 2
- Two instantaneous safety outputs
- Two OFF-delay safety outputs
- Logical AND connection output

Indicators That Make Maintenance Easier

The indicators show the location and cause of wiring errors and any other errors that are detected. Auxiliary outputs for errors also contribute to reducing down time.

Mechanical Safety Door Switches Can Also Be Connected with the G9SX-NSA

Inputs can be accepted from both D40A Switches and mechanical switches to reduce the number of Controllers and costs.

Expansion Units to Easily Increase the Number of Outputs with the G9SX-NSA

The number of outputs can be easily increased using connectors. Up to 25 outputs can be configured.
Reduce Costs with these New-Concept Controllers

Issue 1 Two Controllers are required for emergency stop switches and non-contact door switches.

- **Application**
 - One hazard.
 - The system must be stopped when either a door is opened or an emergency stop switch is pressed.

The G9SA must be added to connect the emergency stop switch.

- **Solution 1**
 - The D40A Simplifies the Configuration
 - With only one G9SX-NSA222-T03 Controller, both a Non-contact Door Switch and an emergency stop switch can be connected.

Issue 2 Another Controller has to be added to use an OFF-delay timer.

- **Application**
 - Two hazards.
 - The power supply must be turned OFF immediately when the emergency stop switch is pressed.
 - When a door is opened, a stop signal is sent to only servomotor B and then the power supply is turned OFF.

The G9SA must be added to use an OFF-delay timer.

- **Solution 2**
 - The D40A Simplifies the Configuration
 - A Controller can be eliminated because the G9SX-NSA222-T03 provides an OFF-delay output.

- Always use a manual reset when using an emergency stop.

Refer to G9SX for the features of the G9SX Series.
Model Number Structure

Model Number Legend
Non-Contact Door Switch (Switch/Actuator)

D40A - [□□□]
 1 2 3

1. Type
 1: Standard model

2. Auxiliary outputs
 C: 1NO (PNP transistor output)

3. Cable length
 2: 2 m
 5: 5 m

Non-Contact Door Switch Controller
G9SX - [□□□□□] - [□□] - [□□]

1. Functions
 NS/NSA: D40A Controller
 EX: Expansion Unit

2. Output Configuration
 (Instantaneous Safety Outputs)
 2: 2 outputs
 4: 4 outputs

3. Output Configuration
 (OFF-delayed Safety Outputs)
 0: None
 2: 2 outputs

4. Output Configuration
 (Auxiliary Outputs)
 1: 1 output

5. Max. OFF-delay Time
 T03: 3 s (Variable)

6. Terminal Block Type
 RT: Screw terminals
 RC: Spring-cage terminals

Ordering Information

Non-Contact Door Switches (Switch/Actuator)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Appearance</th>
<th>Auxiliary outputs</th>
<th>Cable length</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard models</td>
<td>![Image]</td>
<td>Semiconductor outputs</td>
<td>2 m</td>
<td>D40A-1C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 m</td>
<td>D40A-1C5</td>
</tr>
</tbody>
</table>

Note: Must be used in combination with a G9SX-NS Non-contact Door Switch Controller.
*1. PNP open-collector semiconductor output.
*2. Ask your OMRON representative for the connector models.

Non-Contact Door Switch Controllers (Controllers for D40A)

<table>
<thead>
<tr>
<th>Safety outputs</th>
<th>Auxiliary outputs</th>
<th>Logical AND connection input</th>
<th>Logical AND connection output</th>
<th>Max. OFF delay time</th>
<th>Rated voltage</th>
<th>Terminal block type</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>OFF-delayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (Semi-conductors)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>24 VDC</td>
<td>Screw terminals</td>
<td>G9SX-NS202-RT</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2 (Semi-conductors)</td>
<td>1</td>
<td></td>
<td>3.0 s</td>
<td>Spring-cage terminals</td>
<td>G9SX-NS202-RC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Screw terminals</td>
<td>G9SX-NSA222-T03-RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spring-cage terminals</td>
<td>G9SX-NSA222-T03-RC</td>
</tr>
</tbody>
</table>

*1. P channel MOS FET transistor output
*2. The OFF-delayed output becomes an instantaneous output by setting the OFF-delay time to 0 s.
*3. PNP transistor output
*4. The OFF-delay time can be set in 16 steps as follows:
 0/0.2/0.3/0.4/0.5/0.6/0.7/0.8/0.9/1.0/1.2/1.4/1.8/2.0/2.5/3.0 s

Expansion Units

<table>
<thead>
<tr>
<th>Safety outputs</th>
<th>Auxiliary outputs</th>
<th>OFF-delay time</th>
<th>Rated voltage</th>
<th>Terminal block type</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>OFF-delayed</td>
<td></td>
<td>24 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4PST-NO</td>
<td></td>
<td>1</td>
<td></td>
<td>Screw terminals</td>
<td>G9SX-EX01-RT</td>
</tr>
<tr>
<td>---</td>
<td>(Semi-conductor)</td>
<td>4PST-NO</td>
<td></td>
<td>Spring-cage terminals</td>
<td>G9SX-EX01-RC</td>
</tr>
</tbody>
</table>

*1. PNP transistor output
*2. The OFF-delay time is synchronized to the OFF-delay time setting in the connected Controller (G9SX-NSA222-T03-□□).
Specifications

Ratings and Characteristics (Non-contact Door Switches)

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>D40A-1C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating characteristics #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating distance OFF→ON</td>
<td>5 mm min.</td>
<td></td>
</tr>
<tr>
<td>Operating distance ON→OFF</td>
<td>15 mm max.</td>
<td></td>
</tr>
<tr>
<td>Differential travel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence of temperature (max.)</td>
<td>±20% of operating distance at 23°C, within temperature range of –10 to 55°C</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>–10 to 55°C (no icing or condensation)</td>
<td></td>
</tr>
<tr>
<td>Ambient operating humidity</td>
<td>25% to 85%</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance (between charged parts and case)</td>
<td>50 MΩ max. (at 500 VDC)</td>
<td></td>
</tr>
<tr>
<td>Dielectric strength (between charged parts and case)</td>
<td>1,000 VAC for 1 min</td>
<td></td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>10 to 55 Hz (single amplitude: 0.75 mm, double amplitude: 1.5 mm)</td>
<td></td>
</tr>
<tr>
<td>Shock resistance</td>
<td>300 m/s² min.</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP67</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>PBT resin</td>
<td></td>
</tr>
<tr>
<td>Mounting method</td>
<td>M4 screws</td>
<td></td>
</tr>
<tr>
<td>Terminal screw tightening torque</td>
<td>1 N·m</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>0.6 W max.</td>
<td></td>
</tr>
<tr>
<td>Auxiliary outputs #2</td>
<td>24 VDC, 10 mA (PNP open-collector outputs)</td>
<td></td>
</tr>
<tr>
<td>LED indicators</td>
<td>Actuator not detected (red); actuator detected (yellow)</td>
<td></td>
</tr>
<tr>
<td>Connection cables</td>
<td>2 m, 5 m</td>
<td></td>
</tr>
<tr>
<td>Number of connectable switches #3</td>
<td>30 max. (wiring length: 100 m max.)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Switch: approx. 145 g, actuator: approx. 20 g (D40A-1C2)</td>
<td></td>
</tr>
</tbody>
</table>

#1. This is the distance where the switch operates from OFF to ON when approaching and the distance where the switch operates from ON to OFF when separating when the switch and actuator target marks are on the same axis, and the sensing surfaces coincide.

#2. Turns ON when the actuator is approaching. The G3R series of the SSR can be driven at an auxiliary output of 10 mA. Contact your OMRON representative for details.

#3. For details, refer to Item 5 on page 25.
Ratings (Non-contact Door Switch Controllers)

Power input

<table>
<thead>
<tr>
<th>Item</th>
<th>G9SX-NS202-□</th>
<th>G9SX-NSA222-T03-□</th>
<th>G9SX-EX-□</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage</td>
<td>24 V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>-15% to 10% of rated supply voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated power consumption*</td>
<td>3 W max.</td>
<td>4 W max.</td>
<td>2 W max.</td>
</tr>
</tbody>
</table>

*Power consumption of loads not included.

Inputs

<table>
<thead>
<tr>
<th>Item</th>
<th>G9SX-NS202-□/G9SX-NSA222-T03-□</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety input #1</td>
<td>Operating voltage: 20.4 VDC to 26.4 VDC, internal impedance: approx. 2.8 kΩ #2</td>
</tr>
<tr>
<td>Feedback/reset input</td>
<td></td>
</tr>
</tbody>
</table>

#1. Only applies to the G9SX-NSA222-T03-□. Refers to input other than that from the Non-contact Door Switch.
#2. Provide a current equal to or higher than that of the minimum applicable load of the connected input control device.

Outputs

<table>
<thead>
<tr>
<th>Item</th>
<th>G9SX-NS202-□/G9SX-NSA222-T03-□</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous safety output #1</td>
<td>P channel MOS FET transistor output</td>
</tr>
<tr>
<td>OFF-delayed safety output #1</td>
<td>Load current: 0.8 A DC max. #2</td>
</tr>
<tr>
<td>Auxiliary output</td>
<td>PNP transistor output</td>
</tr>
<tr>
<td></td>
<td>Load current: 100 mA max.</td>
</tr>
</tbody>
</table>

#1. While safety outputs are in the ON state, the following signal sequence is output continuously for diagnosis.

When using the safety outputs as input signals to control devices (i.e. Programmable Controllers), consider the OFF pulse shown below.

\[
\begin{array}{c}
\text{ON} \\
\hline
\text{OFF} \\
\end{array}
\]

Approx. 100 ms

360 μs max.

#2. The following derating is required when Units are mounted side-by-side.
G9SX-NS202-□/G9SX-NSA222-T03-□: 0.4 A max. load current

Expansion Unit

<table>
<thead>
<tr>
<th>Item</th>
<th>G9SX-EX-□</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated load</td>
<td>250 VAC, 3 A/30 VDC, 3 A (resistive load)</td>
</tr>
<tr>
<td>Rated carry current</td>
<td>3 A</td>
</tr>
<tr>
<td>Maximum switching voltage</td>
<td>250 VAC, 125 VDC</td>
</tr>
</tbody>
</table>
Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>G9SX-NS202-20</th>
<th>G9SX-NSA222-T03-30</th>
<th>G9SX-EX-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-voltage category (IEC/EN 60664-1)</td>
<td>II</td>
<td>II</td>
<td>II (Relay outputs 13 to 43 and 14 to 44: III)</td>
<td></td>
</tr>
<tr>
<td>Operating time (OFF to ON state) #1</td>
<td></td>
<td>100 ms max. (Logical AND connection input ON and Non-contact Door Switch input ON)</td>
<td>50 ms max. (Safety input: ON) #2</td>
<td>30 ms max. #4</td>
</tr>
<tr>
<td>Response time (ON to OFF state) #1</td>
<td></td>
<td>15 ms max. (Logical AND connection input: OFF)</td>
<td>15 ms max. (Safety input OFF and logical AND connection input OFF)</td>
<td>10 ms max. #4</td>
</tr>
<tr>
<td>ON-state residual voltage</td>
<td></td>
<td>3.0 V max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-state leakage current</td>
<td></td>
<td>0.1 mA max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum wiring length of safety input, logical AND connection input, and Non-contact Door Switch input</td>
<td></td>
<td>100 m max. (External connection impedance: 100 Ω max. and 10 nF max.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset input time (Reset button pressing time)</td>
<td></td>
<td>100 ms min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of OFF-delay time #5</td>
<td>---</td>
<td>Within ±5% of the set value</td>
<td>Within ±5% of the set value</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together</td>
<td>20 MΩ min. (at 100 VDC)</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Between all terminals connected together and DIN rail</td>
<td></td>
<td></td>
<td>100 MΩ min. (at 500 VDC)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together</td>
<td>500 VAC for 1 min.</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Between all terminals connected together and DIN rail</td>
<td></td>
<td></td>
<td>1,200 VAC for 1 min</td>
</tr>
<tr>
<td></td>
<td>Between different poles of outputs</td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Between relay outputs connected together and other terminals connected together</td>
<td></td>
<td></td>
<td>2,200 VAC for 1 min</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>10 to 55 Hz, 0.375 mm single amplitude (0.75 mm double amplitude)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock resistance</td>
<td>Destruction</td>
<td>300 m/s²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malfunction</td>
<td>100 m/s²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td>Electrical</td>
<td>---</td>
<td>100,000 cycles min. rated load, switching frequency: 1,800 cycles/hour</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Mechanical</td>
<td>---</td>
<td>5,000,000 cycles min. (switching frequency: 7,200 cycles/hour)</td>
<td>---</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>−10 to 55°C (no icing or condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient operating humidity</td>
<td>25% to 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal tightening torque</td>
<td>0.5 N·m (For the G9SX-NS-RT (with screw terminals) only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 125 g</td>
<td>Approx. 200 g</td>
<td>Approx. 165 g</td>
<td></td>
</tr>
</tbody>
</table>

#1. When two or more Units are connected by logical AND, the operating time and response time are the sum total of the operating times and response times, respectively, of all the Units connected by logical AND.
#2. Represents the operating time when the safety input turns ON with all other conditions set.
#3. Represents the operating time when the logical AND input and the Non-contact Door Switch input turn ON with all other conditions set.
#4. This does not include the operating time or response time of G9SX-NS-RT that are connected.
#5. This does not include the operating time or response time of internal relays in the G9SX-EX-30.
#6. The failure detection time for 24 V short-circuit failure on the input to Non-contact Door Switches is 35 ms max.

If using the Switch for an application other than as a Door Switch, calculate the safe distance using a failure detection time of 35 ms.
Logical AND Connection

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>G9SX-NS202-</th>
<th>G9SX-NSA222-T03-</th>
<th>G9SX-EX-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units connected per logical AND output</td>
<td>4 Units max.</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total number of Units connected by logical AND *1</td>
<td>20 Units max.</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Number of Units connected in series by logical AND</td>
<td>5 Units max.</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Max. number of Expansion Units connected *2</td>
<td>---</td>
<td>---</td>
<td>5 Units max.</td>
<td>---</td>
</tr>
<tr>
<td>Maximum cable length for logical AND input</td>
<td>100 m max.</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: See Logical AND Connection Combinations below for details.

*1. The number of G9SX-EX401-□ Expansion Units or G9SX-EX041-T-□ Expansion Units (OFF-delayed Model) not included.

*2. G9SX-EX401-□ Expansion Units and G9SX-EX041-T-□ Expansion Units (OFF-delayed Model) can be mixed.

Logical AND Connection Combinations

1. One logical AND connection output from a G9SX-NS □ Controller can be logical AND connected to up to four Controllers.

2. Any G9SX-NS □ Controller that receives a logical AND connection input can be logically connected to other Controllers on up to five layers.

3. The largest possible system configuration contains a total of 20 G9SX-NS □ Controllers, G9SX-AD □ Advanced Units, and G9SX-BC Basic Units. In this configuration, each Controller or Advanced Unit can have up to five Expansion Units.

Note: The G9SX-NS □ in the above diagram can be replaced by the G9SX-AD □ Advanced Unit. For details on G9SX-AD □ Advanced Units, refer to the G9SX-series Flexible Safety Unit catalog. (Cat. No. J150).
Response Time and Operating Time

1. G9SX-NS

<table>
<thead>
<tr>
<th>Non-contact Door Switch input</th>
<th>Logical AND input</th>
<th>Max. response time (excluding Expansion Units)</th>
<th>Max. operating time (excluding Expansion Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D40A (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 ms</td>
<td>15 ms</td>
<td>20 ms</td>
<td>15 ms</td>
</tr>
</tbody>
</table>

*1. The maximum response time is the time it takes the output to switch from ON to OFF after the input switches from OFF to ON.
*2. The maximum operating time is the time it takes the output to switch from OFF to ON after the input switches from OFF to ON.

2. G9SX-NSA

<table>
<thead>
<tr>
<th>Non-contact Door Switch input</th>
<th>Logical AND input</th>
<th>Max. response time (excluding Expansion Units)</th>
<th>Max. operating time (excluding Expansion Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 ms</td>
<td>15 ms</td>
<td>20 ms</td>
<td>15 ms</td>
</tr>
</tbody>
</table>

*1. The maximum response time is the time it takes the output to switch from ON to OFF after the input switches from OFF to ON.
*2. The maximum operating time is the time it takes the output to switch from OFF to ON after the input switches from OFF to ON.

3. Multiple G9SX-NS/NSA Non-contact Door Switch Controllers

When multiple Controllers are logically connected with AND connections, the response time is the sum of the response times given in 1 and 2 above. (It is the same for the operating time.)

* Case 1
Response Time from When D40A (1) Turns from ON to OFF until Safety Output (2) Turns from ON to OFF

20 ms + 15 ms = 35 ms
(D40A (1) (Logical AND connection (1)))

* Case 2
Response Time from When D4NS Turns from ON to OFF until Safety Output (3) Turns from ON to OFF

15 ms + 15 ms + 15 ms = 45 ms
(D4NS) (Logical AND connection (1)) (Logical AND connection (2))
Engineering Data

Detection Ranges (Typical Characteristics Data)

Note: 1. The operating distance is the distance between the switch and actuator sensing surfaces.
2. Data in the diagram is typical data at an ambient temperature of 23°C. Actual operating values may vary. The operating distance may be affected by ambient metal, magnet catches, and temperature.

Connections

Internal Connection
G9SX-NS202-□ (Non-contact Door Switch Controller)

G9SX-EX401-□/G9SX-EX041-T-□ (Expansion Unit/Expansion Unit OFF-delayed Model)

*1. Internal power supply circuit is not isolated.
*2. Logical AND input is isolated.
*3. Outputs S14 to S24 are internally redundant.

G9SX-NSA222-T03-□ (Non-contact Door Switch Controller)

*1. Internal power supply circuit is not isolated.
*2. Relay outputs are isolated.
*3. Outputs S14 to S54 are internally redundant.

Internal Circuit Diagram
D40A-1C
Dimensions and Terminal Arrangement

Non-contact Door Switch (Switch/Actuator)
D40A-1C2
D40A-1C5

Non-contact Door Switch Controller
G9SX-NS202-

Non-contact Door Switch Controller
G9SX-NSA222-T03-

Note: 1. Above outline drawing is for models with spring-cage terminals (-RC).
2. For models with spring-cage terminals (-RC) only.
※ Typical dimension
Expansion Unit
G9SX-EX401-
Expansion Unit (OFF-delayed Model)
G9SX-EX041-T-

Terminal arrangement

Note: 1. Above outline drawing is for models with spring-cage terminals (-RC).
2. For models with spring-cage terminals (-RC) only.

* Typical dimension
Non-contact Door Switch and Non-contact Door Switch Controller Wiring

Example: Wiring a Single Switch

![Diagram of wiring a single switch]

- D40A-1C
- G9SX-NS202
- G9SX-NSA222-T03

Auxiliary output load *

* The auxiliary output load current must be 10 mA max.

Example: Wiring Multiple Switches

Connect Up to 30 Non-contact Door Switches

![Diagram of wiring multiple switches]

Wiring of Inputs and Outputs

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Wire color</th>
<th>Description of operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-contact Door Switch power supply input</td>
<td>Brown, Blue</td>
<td>Supplies power to the D40A. Connect to the D3 and D4 terminal of the G9SX-NS.</td>
</tr>
<tr>
<td>Non-contact Door Switch input</td>
<td>White</td>
<td>Inputs signals from the G9SX-NS. The Non-contact Door Switch input must be ON as a required condition for the Non-contact Door Switch output to be ON.</td>
</tr>
<tr>
<td>Non-contact Door Switch output</td>
<td>Black</td>
<td>Turns ON and OFF according to actuator detection and the status of the Non-contact Door Switch input.</td>
</tr>
<tr>
<td>Auxiliary output</td>
<td>Yellow</td>
<td>Turns ON when actuator is detected.</td>
</tr>
</tbody>
</table>
Wiring of Inputs and Outputs

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Terminal name</th>
<th>Description of operation</th>
<th>Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply input</td>
<td>A1, A2</td>
<td>Connect the power source to the A1 and A2 terminals.</td>
<td>Connect the power supply plus (24 VDC) to the A1 terminal. Connect the power supply minus (GND) to the A2 terminal.</td>
</tr>
<tr>
<td>Non-contact Door Switch input</td>
<td>D1, D2, D3, D4</td>
<td>All Non-contact Door Switch inputs connected to the G9SX-NS must be ON as a required condition for the safety outputs to be ON. Otherwise the safety outputs cannot be in the ON state.</td>
<td></td>
</tr>
<tr>
<td>Feedback/reset input</td>
<td>T31, T32, T33</td>
<td>To set the safety outputs in the ON state, the ON state signal must be input to T33. Otherwise the safety outputs cannot be in the ON state.</td>
<td>Auto reset</td>
</tr>
<tr>
<td>Logical AND connection input</td>
<td>T41, T42</td>
<td>A logical AND connection means that one unit (Unit A) outputs a safety signal “a” to a subsequent unit (Unit B) and Unit B calculates the logical AND (i.e., outputs the AND) of the signal “a” and safety signal “b”, which is input to Unit B. Thereby the logic of the safety output of Unit B is (AND). (An AND of inputs “a” and “b” is output.) To set the safety outputs of the subsequent Unit in the ON state, its logical AND connection preset switch must be set to AND (enable) and the high signal must be input to T41 of the subsequent unit.</td>
<td>Manual reset</td>
</tr>
<tr>
<td>Instantaneous safety output</td>
<td>S14, S24</td>
<td>Turns ON/OFF according to the state of the safety inputs, Non-contact Door Switch inputs, feedback/reset inputs, and logical AND connection inputs. During OFF-delay state, the Instantaneous safety outputs are not able to turn ON.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Logical AND connection output</td>
<td>L1</td>
<td>Outputs a signal of the same logic and at the same time as the instantaneous safety outputs.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Auxiliary monitor output</td>
<td>X1</td>
<td>Outputs a signal of the same logic and at the same time as the instantaneous safety outputs.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Auxiliary error output</td>
<td>X2</td>
<td>Outputs when the error indicator is lit or flashing.</td>
<td>Keep these outputs open when not used.</td>
</tr>
</tbody>
</table>
G9SX-NSA222-T03-T

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Terminal name</th>
<th>Description of operation</th>
<th>Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply input</td>
<td>A1, A2</td>
<td>Connect the power source to the A1 and A2 terminals.</td>
<td>Connect the power supply plus (24 VDC) to the A1 terminal. Connect the power supply minus (GND) to the A2 terminal.</td>
</tr>
<tr>
<td>Safety input 1</td>
<td>T11, T12</td>
<td>To set the safety outputs in the ON state, the high state signals must be input to both safety input 1 and safety input 2. Otherwise the safety outputs cannot be in the ON state.</td>
<td>Corresponds to Safety Category 2</td>
</tr>
<tr>
<td>Safety input 2</td>
<td>T21, T22</td>
<td></td>
<td>Corresponds to Safety Category 3 (without short-circuit monitoring between systems)</td>
</tr>
<tr>
<td>Non-contact Door Switch input</td>
<td>D1, D2, D3, D4</td>
<td>All Non-contact Door Switch inputs connected to the G9SX-NS must be ON as a required condition for the safety outputs to be ON. Otherwise the safety outputs cannot be in the ON state.</td>
<td></td>
</tr>
<tr>
<td>Feedback/reset input</td>
<td>T31, T32, T33</td>
<td>To set the safety outputs in the ON state, the ON state signal must be input to T33. Otherwise the safety outputs cannot be in the ON state.</td>
<td>Auto reset</td>
</tr>
<tr>
<td>Logical AND connection input</td>
<td>T41, T42, T51, T52</td>
<td>A logical AND connection means that one unit (Unit A) outputs a safety signal “a” to a subsequent unit (Unit B) and Unit B calculates the logical AND (i.e., outputs the AND) of the signal “a” and safety signal “b”, which is input to Unit B. Thereby the logic of the safety output “b” is output. To set the safety outputs of the subsequent Unit in the ON state, its logical AND connection preset switch must be set to AND (enable) and the high signal must be input to T41 of the subsequent unit.</td>
<td>Manual reset</td>
</tr>
<tr>
<td>Cross fault detection input</td>
<td>Y1</td>
<td>Selects the mode for the failure detecting (cross fault detecting) function for the safety inputs of G9SX corresponding to the connection of the cross fault detection input.</td>
<td>Keep Y1 open when using T11, T21. (Cross fault detecting mode (for safety inputs)) Connect Y1 to 24 VDC when not using T11, T21. (Wiring corresponding to category 2 or 3, or when connecting safety sensors)</td>
</tr>
<tr>
<td>Instantaneous safety output</td>
<td>S14, S24</td>
<td>Turns ON/OFF according to the state of the safety inputs, feedback/reset inputs, and logical AND connection inputs. During OFF-delay state, the Instantaneous safety outputs are not able to turn ON.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>OFF-delayed safety output</td>
<td>S44, S54</td>
<td>OFF-delayed safety outputs. The OFF-delay time is set by the OFF-delay preset switch. When the delay time is set to zero, these outputs can be used as non-delay outputs.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Logical AND connection output</td>
<td>L1</td>
<td>Outputs a signal of the same logic and at the same time as the instantaneous safety outputs.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Auxiliary monitor output</td>
<td>X1</td>
<td>Outputs a signal of the same logic and at the same time as the instantaneous safety outputs.</td>
<td>Keep these outputs open when not used.</td>
</tr>
<tr>
<td>Auxiliary error output</td>
<td>X2</td>
<td>Outputs when the error indicator is lit or flashing.</td>
<td>Keep these outputs open when not used.</td>
</tr>
</tbody>
</table>

Connecting Safety Sensors

Safety sensors cannot be connected to safety inputs for the G9SX-NSA222-T03-T. [Diagram of Wiring]
Operation

Functions
Logical AND Connection
A logical AND connection means that the G9SX outputs a safety signal “a” to another G9SX, and that G9SX creates the logical AND of safety signal “a” and safety signal “b.” The safety output of the G9SX-NSA222-T03-@ with the logical AND connection shown in the following diagram is “a” AND “b.”

This is illustrated using the application in the following diagram as an example. The equipment here has two hazards identified as Robot 1 and Robot 2, and it is equipped with Non-contact Door Switches and an emergency stop button as safety measures. If the door to Robot 2 is opened, only Robot 2 is stopped (i.e., a partial stop). If the door to Robot 1 is opened or the emergency stop button is pressed, both Robot 1 and Robot 2 stop (i.e., a complete stop).

The actual situation using a G9SX for this application is shown in this example.

Note: The logical AND setting on the G9SX-NS202-@ must be set to AND (enabled).

Connecting Expansion Units
- The G9SX-EX and G9SX-EX-T Expansion Units can be connected to a G9SX-NSA222-T3-@ Non-contact Door Switch Controller to increase the number of safety outputs. (They cannot be connected to a G9SX-NS202-@.)
- A maximum of five Expansion Units can be connected to one G9SX-NSA222-T03-@. This may be a combination of G9SX-EX instantaneous models and G9SX-EX-T OFF-delayed models.
- Remove the terminating connector from the receptacle on G9SX-NSA222-T03-@ and insert the Expansion Unit cable connector into the receptacle. Insert the terminating connector into the receptacle on the Expansion Unit at the very end (rightmost).
- When Expansion Units are connected to a Controller, make sure that power is supplied to every Expansion Unit. (Refer to the following diagram for actual Expansion Unit connection.)

* A manual reset is required when an emergency stop is used.
Setting Procedure

1. Cross Fault Detection (G9SX-NS222-T03-

Set the cross fault detection mode for safety inputs by shorting Y1 to 24 V or leaving it open. When cross fault detection is set to ON, short-circuit failures are detected between safety inputs T11-T12 and T21-22. When a cross fault is detected, the following will occur.
1. The safety outputs and logical AND outputs lock out.
2. The LED error indicator is lit.
3. The error output (auxiliary output) turns ON.

2. Reset Mode (G9SX-NS202-NSA222-T03-

Set the reset mode using feedback/reset input terminals T31, T32, and T33. Auto reset mode is selected when terminal T32 is shorted to 24 V and manual reset mode is selected when terminal T33 is shorted to 24 V.

3. Setting Logical AND Connection (G9SX-NS202-NSA222-T03-

When connecting two or more Non-contact Door Switch Controllers by logical AND connection, set the logical AND connection preset switch on the Controller that is on the input side (Unit B in the following diagram) to AND. The default setting of the logical AND connection preset switch is set to OFF.

Note: A setting error will occur and Unit B will lock out if the logical AND setting switch on the Unit B is set to OFF.

4. Setting the OFF-delay Time (G9SX-NS222-T03-

The OFF-delay preset time on G9SX-NS222-T03- is set from the OFF-delay time preset switch (1 each on the front and back of the Unit). Normal operation will only occur if both switches are identically set. An error will occur if the switches are not identically set. The default setting of the OFF-delay time preset switch is set to 0 s.

Refer to the following illustration for details on setting switch positions.

G9SX-NS222-T03-
LED Indicators

<table>
<thead>
<tr>
<th>Marking</th>
<th>Color</th>
<th>Name</th>
<th>G9SX-NS202</th>
<th>G9SX-NSA222</th>
<th>G9SX-EX</th>
<th>G9SX-EX-T</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>Green</td>
<td>Power supply indicator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while power is supplied.</td>
</tr>
<tr>
<td>T1</td>
<td>Orange</td>
<td>Safety input #1 indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while a high signal is input to T1. Flashes when an error relating to safety input #1 occurs.</td>
</tr>
<tr>
<td>T2</td>
<td>Orange</td>
<td>Safety input #2 indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while a high signal is input to T2. Flashes when an error relating to safety input #2 occurs.</td>
</tr>
<tr>
<td>NS</td>
<td>Orange</td>
<td>Non-contact Door Switch input indicator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights when the Non-contact Door Switch input turns ON. Flashes when an error relating to the Non-contact Door Switch input occurs.</td>
</tr>
<tr>
<td>FB</td>
<td>Orange</td>
<td>Feedback/reset input indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights in the following cases: With automatic reset while a high signal is input to T33. With manual reset while a high signal is input to T32. Flashes when an error relating to feedback/reset input occurs.</td>
</tr>
<tr>
<td>AND</td>
<td>Orange</td>
<td>Logical AND input indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while a high signal is input to T41. Flashes when an error relating to logical AND connection input occurs.</td>
</tr>
<tr>
<td>EI</td>
<td>Orange</td>
<td>Instantaneous safety output indicator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while the Instantaneous safety outputs (S14, S24, S34) are in the ON state. Flashes when an error relating to the instantaneous safety output occurs.</td>
</tr>
<tr>
<td>ED</td>
<td>Orange</td>
<td>OFF-delayed safety output indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights while OFF-delayed safety outputs (S44, S54) are in the ON-state. Flashes when an error relating to OFF-delayed safety output occurs.</td>
</tr>
<tr>
<td>ERR</td>
<td>Red</td>
<td>Error indicator</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lights or flashes when an error occurs.</td>
</tr>
</tbody>
</table>

*Refer to “Fault Detection” on the next page for details.

Settings Indication (at Power ON)

Settings for the G9SX can be checked by the orange indicators for approx. 3 seconds after the power is turned ON. During this settings indication period, the ERR indicator will light, however the auxiliary error output will remain OFF.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Item</th>
<th>Setting position</th>
<th>Indicator status</th>
<th>Setting mode</th>
<th>Setting status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Cross fault detection mode</td>
<td>Y1 terminal</td>
<td>Lit</td>
<td>Detection mode</td>
<td>Y1 = open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not lit</td>
<td>Non-detection mode</td>
<td>Y1 = 24 VDC</td>
</tr>
<tr>
<td>FB</td>
<td>Reset mode</td>
<td>T32 or T33 terminal</td>
<td>Lit</td>
<td>Manual reset mode</td>
<td>T33 = 24 VDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not lit</td>
<td>Auto reset mode</td>
<td>T32 = 24 VDC</td>
</tr>
<tr>
<td>AND</td>
<td>Logical AND connection input mode</td>
<td>Logical AND connection preset switch</td>
<td>Lit</td>
<td>Enable logical AND input</td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not lit</td>
<td>Disable logical AND input</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Fault Detection
When the Non-contact Door Switch Controller detects a fault, the ERR indicator and/or other indicators light up or flash to inform the user about the fault. Check and take necessary measures referring to the following table, and then re-supply power to the Non-contact Door Switch Controller.

(G9SX-NS202-□/NSA222-T03-□)

<table>
<thead>
<tr>
<th>ERR indicator</th>
<th>Other indicator</th>
<th>Fault</th>
<th>Expected causes of the fault</th>
<th>Check points and measures to take</th>
</tr>
</thead>
</table>
| ⚫ Flashes | | Fault due to electromagnetic disturbance or of internal circuits. | 1. Excessive electromagnetic disturbance
2. Failure of the internal circuit | 1. Check the disturbance level around the G9SX and the related system.
2. Replace with a new product. |
| T1 flashes | | Fault involved with safety input 1 | 1. Error in the wiring of safety input 1
2. Incorrect setting of cross fault detection input
3. Failure of the circuit of safety input 1 | 1. Check the wiring to T11 and T12.
2. Check the wiring to Y1.
3. Replace with a new product. |
| T2 flashes | | Fault involved with safety input 2 | 1. Error in the wiring of safety input 2
2. Incorrect setting of cross fault detection input
3. Failure of the circuit of safety input 2 | 1. Check the wiring to T21 and T22.
2. Check the wiring to Y1.
3. Replace with a new product. |
| NS flashes | | Fault involved with Non-contact Door Switch input | 1. Error in the wiring of Non-contact Door Switch input
2. Error in the wiring of Non-contact Door Switch inputs in series connections.
3. Failure of the internal circuits of Non-contact Door Switch inputs
4. Failure of the Non-contact Door Switch | 1. Check the wiring to D1 and D2.
2. Check the wiring to the D40A.
3. Replace with a new product.
4. Replace with a new D40A. |
| ⚫ Lights | FB flashes | Fault involved with feedback/reset inputs | 1. Error in the wiring of feedback/reset input.
2. Failure of the circuit of feedback/reset input | 1. Check the wiring to T31, T32 and T33.
2. Replace with a new product. |
| | | Fault in Expansion Unit | 1. Improper feedback signals from Expansion Unit
2. Abnormal supply voltage to Expansion Unit
3. Failure of the circuit of safety relay contact outputs | 1. Check the connecting cable of Expansion Unit and the connection of the termination socket.
2. Check the supply voltage to Expansion Unit.
Note: Make sure that all Expansion Units’ PWR indicators are lit.
3. Replace with a new product. |
| ⚫ Flashes | EI flashes | Fault involved with instantaneous safety outputs, logical AND connection outputs, or auxiliary monitor output | 1. Error in the wiring of instantaneous safety outputs
2. Failure of the circuit of instantaneous safety outputs
3. Error in the wiring of the logical AND connection output
4. Failure of the circuit of the logical AND connection output
5. Error in the wiring of the auxiliary monitor output
6. Impermissible high ambient temperature | 1. Check the wiring to S14 and S24.
2. Replace with a new product.
3. Check the wiring to L1.
4. Replace with a new product.
5. Check the wiring to X1.
6. Check the ambient temperature and spacing around the G9SX. |
| | ED flashes | Fault involved with OFF-delayed safety outputs | 1. Error in the wiring of OFF-delayed safety relay contact outputs
2. Incorrect set values for OFF-delay time
3. Failure of the circuit of OFF-delayed safety relay contact outputs
4. Impermissible high ambient temperature | 1. Check the wiring to S44 and S54.
2. Check the settings of the OFF-delay time setting switch.
3. Replace with a new product.
4. Check the ambient temperature and spacing around the G9SX. |
When indicators other than the ERR indicator flash, check and take necessary actions referring to the following table.

<table>
<thead>
<tr>
<th>ERR indicator</th>
<th>Other indicator</th>
<th>Fault</th>
<th>Expected causes of the fault</th>
<th>Check points and measures to take</th>
</tr>
</thead>
</table>
| < Lights | AND flashes | Fault involved with logical AND connection input | 1. Error in the wiring of the logical AND connection input | 1. Check the wiring to T41 and T42.
Note: 1. Make sure that the wiring length for the T41, T42 terminal is 100 meters or less.
2. Make sure that the logical AND connection signal is branched for 4 units or fewer.
2. Confirm the set value of the logical AND connection preset switch.
3. Replace with a new product. |
| | All indicators except PWR flash | Supply voltage outside the rated value | 1. Supply voltage outside the rated value | 1. Check the supply voltage to the Units. |

When indicators other than the ERR indicator flash, check and take necessary actions referring to the following table.

<table>
<thead>
<tr>
<th>ERR indicator</th>
<th>Other indicators</th>
<th>Fault</th>
<th>Expected cause of the fault</th>
<th>Check points and measures to take</th>
</tr>
</thead>
<tbody>
<tr>
<td>< Off < T1</td>
<td>< T2 flash</td>
<td>Mismatch between input 1 and input 2.</td>
<td>The input status between input 1 and input 2 is different, due to contact failure or a short circuit of safety input device(s) or a wiring fault.</td>
<td>Check the wiring from safety input devices to the G9SX. Or check the input sequence of safety input devices. After removing the fault, turn both safety inputs 1 and 2 to the OFF state.</td>
</tr>
</tbody>
</table>

(Expansion Unit)

<table>
<thead>
<tr>
<th>ERR indicator</th>
<th>Other indicators</th>
<th>Fault</th>
<th>Expected cause of the fault</th>
<th>Check points and measures to take</th>
</tr>
</thead>
</table>
| < Lights | --- | Fault involved with safety relay outputs of Expansion Units | 1. Welding of relay contacts
2. Failure of the internal circuit | Replace with a new product. |
Application Examples

G9SX-NSA222-T03 (24 VDC) (1-channel Emergency Stop Switch Input + Non-contact Door Switch/Manual Reset)

Control circuit

Motor controller
(Operation command)
S1: Emergency Stop Switch
S2: Non-contact Door Switch
S3: Reset Switch
KM1, KM2: Contactor
M1: 3-phase motor

Note:
1. This example corresponds to category 2.
2. For details on Non-contact Door Switch wiring, refer to pages 15 and 16 or to the User’s Manual.

G9SX-NSA222-T03 (24 VDC) (2-channel Safety Limit Switch Input + Non-contact Door Switch/Auto Reset)

Control circuit

Motor controller
(Operation command)
S1: Safety limit switch
S2: Limit switch
S3: Non-contact Door Switch
KM1, KM2: Contactor
M1: 3-phase motor

Note:
1. This example corresponds to category 3.
2. For details on Non-contact Door Switch wiring, refer to pages 15 and 16 or to the User’s Manual.
G9SX-BC202 (24 VDC) (2-channel Emergency Stop Switch Input/Manual Reset) +
G9SX-NS202-□ (24 VDC) (Non-contact Door Switch Input/Auto Reset)

Note:
1. This example corresponds to category 3.
2. For details on Non-contact Door Switch wiring, refer to pages 15 and 16 or to the User’s Manual.
Safety Precautions

Refer to the “Precautions for All Switches” and “Precautions for All Safety Door Switches”.

Precautions for Safe Use

1. Disconnect the G9SX-NS from the power supply when wiring the D40A.
2. Turn OFF the load power supply before wiring. Failure to do so may cause electric shock.
3. Devices connected to the product may operate unexpectedly.
4. Wire conductors correctly and verify the operation of the product before using the system in which the product is incorporated. Incorrect wiring may cause loss of safety functions.
5. After installing the D40A, qualified personnel must confirm the installation, and must conduct test operations and maintenance. The qualified personnel must be qualified and authorized to secure safety at each phases of design, installation, running, maintenance, and disposal of the system.
6. A qualified person in charge, who is familiar with the machine in which the D40A is to be installed, must conduct and verify the installation.
7. Be sure to inspect the D40A daily and every 6 months. Otherwise, serious injury may possibly occur due to system malfunctions.
8. Connect the D40A to only appropriate components or devices complying with relevant safety standards corresponding to the required level of safety category. Conformity to requirements of the safety category must be determined for the entire system. It is recommended to consult an authorized certification body regarding assessment of conformity to the required safety level.
9. Do not dismantle, repair, or modify the product. Doing so may lead to loss of safety functions.
10. Use the G9SX within an enclosure with a IP54 degree of protection or higher according to IEC/EN 60529.
11. Do not apply DC voltages exceeding the rated voltages, nor any AC voltages to G9SX-NS.
12. Use a DC supply satisfying the requirements given below to prevent electric shock:
 - A DC power supply with double or reinforced insulation, for example, according to IEC/EN 60950 or EN 50178, or a transformer according to IEC/EN 61558.
 - A DC supply satisfying the requirements for class 2 circuits or limited voltage/current circuits stated in UL 508.
13. Properly apply the specified voltages to the inputs. Applying inappropriate voltages may cause the product to fail to perform its specified function, which could lead to the loss of safety functions or damages to the product.
14. Auxiliary error outputs and auxiliary monitoring outputs are NOT safety outputs. Do not use these outputs as safety outputs. Such incorrect use will cause loss of safety functions of the G9SX and its relevant system. Also logical AND connection outputs can only be used for logical AND connections with the G9SX.
15. After installing the G9SX-NS, qualified personnel must confirm the installation, and must conduct test operations and maintenance. The qualified personnel must be qualified and authorized to secure safety at each phases of design, installation, running, maintenance, and disposal of system.
16. A qualified person in charge, who is familiar with the machine in which G9SX-NS is to be installed, must conduct and verify the installation.
17. Perform daily and 6-month inspections for the G9SX-NS. Otherwise, the system may fail to work properly, resulting in serious injury.

Requirements

- Serious injury may possibly occur due to breakdown of safety outputs. Do not connect loads beyond the rated value to the safety outputs.
- Serious injury may possibly occur due to loss of required safety functions.
- Wire the D40A and G9SX-NS properly so that supply voltages or voltages for loads do NOT touch the safety outputs accidentally.
- The machine may start operating and may result in serious injury or death. Do not put the actuator close to the switch when the door is open.

<table>
<thead>
<tr>
<th>Control device</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency stop switch</td>
<td>Use approved device with direct opening mechanism complying with IEC/EN 60947-5-1.</td>
</tr>
<tr>
<td>Safety door switch, Safety limit switch</td>
<td>Use approved device with direct opening mechanism complying with IEC/EN 60947-5-1 and capable of switching micro loads of 24 VDC, 5 mA.</td>
</tr>
<tr>
<td>Non-contact Door Switch</td>
<td>The G9SX-NS must be used with D40A Non-contact Door Switches.</td>
</tr>
<tr>
<td>Relay with forcibly guided contacts</td>
<td>Use approved devices with forcibly guided contacts complying with EN 50205. For feedback, use devices with contacts capable of switching micro loads of 24 VDC, 5 mA.</td>
</tr>
<tr>
<td>Contactor</td>
<td>Use contactors with forcibly guided mechanism to input the signal to the Feedback/Reset input of the G9SX-NS through the NC contact of the contactor. For feedback, use devices with contacts capable of switching micro loads of 24 VDC, 5 mA. Failure to open contacts of a contactor cannot be detected by connecting NC contact of the contactor without a forcibly guided mechanism to the Feedback/Reset input.</td>
</tr>
<tr>
<td>Other devices</td>
<td>Evaluate whether devices used are appropriate to satisfy the requirements of the safety category level.</td>
</tr>
</tbody>
</table>
18. Connect to the G9SX-NS only appropriate components or devices complying with relevant safety standards corresponding to the required level of safety category. Conformity to requirements of safety category must be determined as an entire system. It is recommended to consult an authorized certification body regarding assessment of conformity to the required safety level.

19. OMRON is not responsible for conformity with any safety standards covering the customer’s entire system.

20. Be careful not to have your fingers caught when mounting terminal blocks.

21. The service life will depend on the switching conditions. Be sure to check the actual operating conditions using the actual devices, and make sure that the number of switching operations will not cause performance problems.
11. Install the actuator and switch at an appropriate distance so that they do not create a gap that provides access to the hazard.

![Correct Incorrect](image)

12. Where two or more Switches are mounted side-by-side, they must be no closer than 25 mm.

![25 mm min.](image)

13. Check that the machine is stopped whenever the interlocked guard door is open.

14. Do not mount the switch and actuator on magnetic materials, otherwise it may affect the operating distance.

<table>
<thead>
<tr>
<th>Distance from surface of magnetic body</th>
<th>Operating distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5 mm</td>
<td>Reduce to approx. 90% of original value.</td>
</tr>
<tr>
<td>5 mm or longer</td>
<td>No influence.</td>
</tr>
</tbody>
</table>

15. Tighten all screws to the specified torque by using non-magnetic M4 screws and washer for the installation of the switch and actuator. After installation and using, the actuator and switch fixing screws must be coated with tamper proof varnish or similar compound. Using anaerobic locking compounds can have a detrimental effect on the plastic switch case if the compounds come into contact with the switch case.

16. Wiring

1. Use the following to wire to the product.

 - Stranded wire (flexible wire): 0.2 to 2.5 mm² (AWG24 to AWG12)
 - Solid wire (steel wire): 0.2 to 2.5 mm² (AWG24 to AWG12)

2. When an auxiliary output is not used, cut off the wiring and cover it with tape so that it does not contact other terminals.

17. Mounting

Mount the G9SX-NS to a DIN rail using End Plates (PFP-M, not included with the product) so that the G9SX-NS does not fall off of the rails due to vibration or other causes, especially when the length of DIN railing is short compared to the width of the G9SX-NS.

18. The following space must be provided around the G9SX-NS to enable applying the rated current to the outputs of the G9SX-NS, to ensure sufficient ventilation, and to enable wiring:

 1. At least 25 mm between side surfaces of the G9SX-NS.
 2. At least 50 mm above the top surface of the G9SX-NS and below the bottom surface of the G9SX-NS.

19. Wiring

1. G9SX-NS-RT (with Screw Terminals)

 - Use the following to wire the G9SX-NS-RT.

Solid wire (steel wire)	0.2 to 2.5 mm² (AWG24 to AWG12)
Stranded wire (flexible wire)	0.2 to 2.5 mm² (AWG24 to AWG12)

 - Tighten each screw to the specified torque of 0.5 to 0.6 N·m, or the G9SX-NS may malfunction or generate heat.
 - Strip the wire for no longer than 7 mm.

2. G9SX-NS-RC (with Spring-cage Terminals)

 - Use the following to wire the G9SX-NS-RC.

Solid wire (steel wire)	0.2 to 2.5 mm² (AWG24 to AWG12)
Stranded wire (flexible wire)	0.2 to 2.5 mm² (AWG24 to AWG12)

3. Logical AND Connections

 - Use VCTF cables or shielded cables for logical AND connections between Units.

20. Connecting G9SX-EX Expansion Units

1. Remove the terminating connector from the connector on the G9SX-NSA222-T0. Insert the connector on the connecting cable of Expansion Unit into the connector on the G9SX-NSA222-T0.

2. Connect the terminating connector to the connector on the Expansion Unit at the end position. When the G9SX-NSA222-T0 is used without Expansion Units, leave the terminating connector on the G9SX-NSA222-T0.

3. Do not remove the terminating connector or connecting cables of Expansion Units while the system is operating.

4. Before applying the supply voltage, confirm that the connectors are locked firmly.

5. All of the Expansion Units must be supplied with its specified voltages within 10 s after the connected G9SX-NSA222-T0 is supplied with voltage. Otherwise, the G9SX-NSA222-T0 will detect a power supply error for the Expansion Units.

21. Use cables with a length of less than 100 m total to connect the safety inputs, feedback/reset inputs, and logical AND connection inputs and outputs.

22. Set the time duration of OFF-delay to an appropriate value that does not cause the loss of safety functions of system.
23. Logical AND connections between Units (Refer to “Functions” on page 17.)
 1. To use logical AND connection inputs, enable the logical AND connection input for the G9SX-NS that will receive the inputs.
 2. Connect the logical AND connection inputs appropriately to the logical AND connection outputs of the G9SX-NS.
 3. When configuring the safety system, be sure to consider that the delay of response time caused by logical AND connection does not degrade the safety functions of the system. (Refer to “Response Time and Operating Time” on page 10.)
 4. Use 2-conductor cabtire cable or shielded cable for logical AND connection inputs between Units.

24. To determine safety distance to hazards, take into account the delay of safety outputs caused by the following time:
 1. Response time of safety inputs
 2. Response time of D40A Non-contact Door Switch inputs
 3. Response time of logical AND connection input
 (Refer to “Response Time and Operating Time” on page 10.)
 4. Preset OFF-delay time
 5. Accuracy of OFF-delay time

25. Start the rest of the system after 5 s or longer has passed since applying supply voltage to all G9SX-NS in the system.

26. Be sure to ground the A2 terminal of the power supply to help prevent malfunctions caused by noise. Also, connect a surge absorber to each end of the coil on inductive loads to reduce noise generation. When sharing a power supply with a Light Curtain, use a DC power supply that will not fail for a momentary power interruption of 20 ms or less.

27. Devices connected to the G9SX-NS may operate unexpectedly. When replacing the G9SX-NS, disconnect it from power supply.

28. Adhesion of solvent
 Do not allow organic solvents, such as alcohol, thinner, trichloroethane, or gasoline, to come into contact with the product. Such solvents make the markings on G9SX-NS illegible and cause deterioration of parts.

29. Do not mix AC and DC circuits for contact outputs in a single G9SX-EX. When using AC and DC circuits, connect at least two G9SX-EX Units and use them respectively as dedicated DC-circuit and AC-circuit contact outputs.

30. Safety Application Controller’s Relay durability depends greatly on the switching condition. Confirm the actual conditions of operation in which the Relay will be used in order to make sure the permissible number of switching operations. When the accumulated number of operation exceeds its permissible range, it can cause failure of reset of safety control circuit. In such case, please replace the Relay or the Safety Application Controller immediately. If the Relay or the Safety Application Controller is used continuously without replacing, then it can lead to loss of safety function.

Switch and Actuator Operation
Switch and Actuator Mounting Directions

Switch and Actuator Operating Directions

Safety Category (EN 954-1)
When used in combination with the G9SX-NS, the D40A can be used for the environments corresponding to safety category 3 as required by EN 954-1. The settings are determined by circuit examples provided by OMRON, however, and may not be applicable depending on the operating conditions. Safety categories are determined for the safety control system as a whole. You must confirm conformity for the entire system.

To conform with Safety Category 3 (EN954-1):
1. Input two channels for the external inputs (T11-T12, T21-T22).
2. Use switches with direct opening mechanisms for external inputs (T11-T12, T21-T22). When using limit switches, use at least one switch with direct opening mechanisms for an input.
3. Connect D40A Switches for Non-contact Door Switch input terminals (D1, D2, D3, D4).
4. Input the contactor’s NC signal between T31 and T32 (manual reset) or between T31 and T33 (auto reset). Refer to “Application Examples” on page 22.
5. The A2 terminal must be grounded.

Approved Standards
D40A/G9SX-NS/G9SX-NSA
- Approved by TÜV SÜD
 EN 50178
 EN 1088
 IEC/EN 60204-1
 EN 954-1 Cat. 3
 IEC/EN 61508 SIL3
 IEC/EN 60947-5-2
 IEC/EN 60947-5-3 PDF-M
- Approved by UL
 UL 508
- CAN/CSA C22.2 No.14
- KOSHÁ certification
Warranty and Limitations of Liability

WARRANTY
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS
The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.