OMRON

Machine Automation Controller NJ-series

General-purpose Ethernet
Connection Guide
(TCP/IP)

OMRON Corporation

V750 series RFID System

Network

Connection

Guide

SYSINAL SEAETO]
always in control

About Intellectual Property Right and Trademarks

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

Ethernet is a registered trademark of Xerox Corporation.

Java and all Java-related trademarks and logos are trademarks or registered trademarks of
Oracle Corporation, Inc., in the USA and other countries.

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

Table of Contents

1. Related ManUAIS ..ot 1
2. Terms and DefiNitionc..uuiiiiiiiiiiiiie e 2
3. REMAIKS e 3
A, OVEIVIBW ittt it ettt e e e e ettt e e e e e e e st bbbt e e e e e e e s e ababbeneeaaaaeanaans 5
5. Applicable Devices and Support Software.......cccccceeviiiiiiiieiieeeninniiieen, 6
5.1. Applicable DEVICES...........oovuiiiiiiieeeece e 6
5.2. Device Configuration.............ooo i 7
6. Ethernet Communications SettiNngS.....ccccccoviiiiiiiiiiie e 9
6.1. Ethernet Communications Settings........ccccovveeiiiiiiiiiiiieeeeeeee e, 9
6.2. Example of Checking Connectioncccieieiiiiiiiiiiiiieee e 10
7. CONNECLION PrOCEAUIEuuiiiiiiiiii ittt 11
7.1. WOTK FIOW .o 11
7.2. Setting Up the RFID Reader/Writer..........cccccvvvveviiviiiiiiieeeeee 12
7.3. Setting Up the Controller...........oooov i 18
7.4. Connection Status ChecK...........cooiiiiiii e 25
8. Initialization Methodcooiiiiiiii e 28
8.1. Controller ... 28
8.2. RFID REAAEIWIILENuuneeiiiiii e 29
1S B o o Lo =11 ¢ PP 30
9.1. (O 1YY o 30
9.2. Destination Device Command...........cccccccuuuuuuuuuiiiniiiiaenaens 34
9.3. Error Detection ProCessingcccuvvvieeiiiiiiiiiiiiecece e 37
9.4. Variablesoooiii 40
9.5. S I d oo = 1 D 45
9.6. TIMING ChartS........ceeeiiiiie e 62
9.7. ErTOr PrOCESS ..ottt 68

O YA ST o o T] o Y2 74

1. Related Manuals

Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all
Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device which is used in the system.

Cat. No. Model Manual name

W500 NJ501-[][1[11] NJ-series CPU Unit Hardware User's Manual
NJ301-[]000

W501 NJS01-[I[0 NJ-series CPU Unit Software User's Manual
NJ301-[I000

W506 NJ501-[I[110 NJ-series CPU Unit Built-in EtherNet/IP Port User's Manual
NJ301-[000

W504 SYSMAC-SE2[]I Sysmac Studio Version 1 Operation Manual

W502 NJS01-[I[110 NJ-series Instructions Reference Manual
NJ301-[I000

Z235 V750-BA50C04-US | v750-series UHF RFID System User’'s Manual
V740-HSO01[][]

2. Terms and Definition

2. Terms and Definition

Terms Explanation and Definition

IP address Ethernet uses an IP address to perform communications.

The IP address (Internet Protocol address) is an address that is used to
identify a node (host computer or controller, etc.) on Ethernet.

IP addresses must be set and managed so they do not overlap.

Socket A socket is an interface that allows you to directly use TCP or UDP
functions from the user program. The socket services enable data
exchange with destination nodes. The NJ-series Machine Automation
Controller performs socket communications by using the standard socket
service instructions.

Connect processing/ | Open processing is executed on each node to connect the TCP socket.
Accept processing The open method depends on whether the node is opened as a server or
client.

In this document, the processing executed to open a node as a client is
called "connect processing" and the processing executed to open as a
server is called "accept processing".

Keep-alive function | When the keep-alive function is used with TCP/IP socket services, the
keep-alive communications frame is used to check the status of the
connection with the destination node (either a server or client) if there are
no communications during the specified time interval.

Checks are executed at a certain interval, and if there is no response to
any of them then the connection is terminated.

Linger function This is an option for the TCP socket that enables immediate connect
processing using the same port number without waiting until the port
number opens after RST data is sent when the TCP socket closes.

If the linger option is not specified, FIN data will be sent when a TCP
socket is closed, and then approximately 1 minute will be required to
confirm the transmission and perform other closing management with the
destination node. Therefore, it may not be possible to immediately use
TCP sockets with the same port number.

3. Remarks

3. Remarks

(1) Understand the specifications of devices which are used in the system. Allow some
margin for ratings and performance. Provide safety measures, such as installing safety
circuit in order to ensure safety and minimize risks of abnormal occurrence.

(2) To ensure system safety, always read and heed the information provided in all Safety
Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device used in the system.

(3) The users are encouraged to confirm the standards and regulations that the system must
conform to.

(4) It is prohibited to copy, to reproduce, and to distribute a part of or whole part of this
document without the permission of OMRON Corporation.

(5) This document provides the latest information as of April 2013. The information on this
manual is subject to change for improvement without notice.

3. Remarks

The following notation is used in this document.

Indicates a potentially hazardous situation which, if not avoided,
could result in death or serious injury. Additionally, there may be
severa property damage.

Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or property damage.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure using the product safely.

IEI Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and
performance.

@ Additional Information

Provides useful information.
Additional information to increase understanding or make operation easier.

Symbols

The triangle symbal indicates precautions (including warnings)
The specific operation is shown in the tiangle and explained in text
This exampls indicates a general precaution

The filled circie symbol indicates operaons that you must do.

This exampls shows a genaral precaution lor something that you must do.

N

4. Overview

Overview

This document describes the procedure for connecting the RFID Reader/Writer (V750 series)
of OMRON Corporation (hereinafter referred to as OMRON) to the NJ-series Machine
Automation Controller (hereinafter referred to as Controller) through Ethernet, and provides
the procedure for checking their connection.

Refer to the Ethernet communications settings of the prepared project file to understand the
setting procedure and key points to connect the devices via Ethernet.

The user program in this project file is used to check the Ethernet connection by
sending/receiving the message of “GETR TYP FWV (read the product type and firmware
version of the memory data)” to/from the destination device.

Prepare the latest Sysmac Studio project file beforehand. For information on how to obtain the
file, contact your OMRON representative.

Name File name Version
Sysmac Studio project file | OMRON_V750_ETN(TCP)_EV101.smc | Ver.1.01
(extension: smc)

*Hereinafter, the Sysmac Studio project file is referred to as the “project file”.
The user program in the project file is referred to as the “program”.

This document aims to explain the wiring method and communications settings

necessary to connect the corresponding devices and provide the setting
procedure. The program used in this document is designed to check if the
connection was properly established, and is not designed to be constantly used
at a site. Therefore, functionality and performances are not sufficiently taken into
consideration. When you construct an actual system, please use the wiring

method, communications settings and setting procedure described in this
document as a reference and design a new program according to your
application needs.

5. Applicable Devices and Support Software

5. Applicable Devices and Support Software

I 5.1. Applicable Devices

The applicable devices are given below.

Manufacturer | Name Model
OMRON NJ-series CPU Unit NJ501-[000
NJ301-[I{I00
OMRON RFID Reader/Writer V750-BA50C04-US
(complies with FCC and EN)
OMRON Antenna V740-HSO1[][]
OMRON Antenna cable V740-A01 [J[IM

’% Additional Information

As applicable devices above, the devices with the models and versions listed in Section 5.2.
are actually used in this document to describe the procedure for connecting devices and
checking the connection.

You cannot use devices with versions lower than the versions listed in Section 5.2.

To use the above devices with versions not listed in Section 5.2 or versions higher than those
listed in Section 5.2, check the differences in the specifications by referring to the manuals
before operating the devices.

’% Additional Information
This document describes the procedure to establish the network connection. Except for the
connection procedure, it does not provide information on operation, installation or wiring
method. It also does not describe the function or operation of the devices. Refer to the
manuals or contact your OMRON representative.

5. Applicable Devices and Support Software

I 5.2. Device Configuration
The hardware components to reproduce the connection procedure of this document are as

follows: RFID Reader/Writer
LAN cable (V750-BA50C04-US)
NJ501-1500 1wl
Personal computer (Built-in EtherNet/IP port) | 004 = \:f
(Sysmac Studio installed, NG (V740-HS01CA)
OS: Windows 7) < AC Adapter
= HIIL _ | (included)
USB cable 1
) Antenna Cable
(V740-A01 [J[IM)

Vs = Switching hub

Manufacturer Name Model Version
OMRON NJ-series CPU Unit NJ501-1500 Ver.1.03
(Built-in EtherNet/IP port)
OMRON Power Supply Unit NJ-PA3001
OMRON Switching Hub W4S1-05C Ver.1.0
OMRON Sysmac Studio SYSMAC-SE2[][II] Ver.1.04
OMRON Sysmac Studio project file OMRON_V750_ETN(TCP) | Ver.1.01
EV101.smc
- Personal computer -
(OS:Windows7)
- USB cable -
(USB 2.0 type B connector)
- LAN cable -
OMRON RFID Reader/Writer V750-BA50C04-US Ver.102-10
2-103-0
OMRON Antenna (Circular) (4 max.) V740-HSO01CA
OMRON Antenna cable V740-A01[)[IM
OMRON AC Adapter (included) -

IE' Precautions for Correct Use

Prepare the latest project file in advance.
To obtain the file, contact your OMRON representative.

IEI Precautions for Correct Use

Update the Sysmac Studio to the version specified in this section or higher version using the
auto update function. If a version not specified in this section is used, the procedures
described in Section 7 and subsequent sections may not be applicable. In that case, use the
equivalent procedures described in the Sysmac Studio Version 1 Operation Manual (Cat.No.
W504).

~

5. Applicable Devices and Support Software

@ Additional Information

It may not be possible to reproduce the same operation with different devices or versions.
Check the configuration, model and version. If they are different from your configuration.
Contact your OMRON representative.

@ Additional Information

In this document, a USB is used to connect with the Controller. For information on how to
install a USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection of the
Sysmac Studio Version 1 Operation Manual (Cat.No. W504).

6. Ethernet Communications Settings

6. Ethernet Communications Settings

This section describes the specifications such as communication parameters and variables

that are set in this document.

’% Additional Information

To perform communications without using the settings described in this section, you need to

modify the program. For information on the program, refer to Section 9. Program.

I 6.1. Ethernet Communications Settings

The settings required for Ethernet communications are shown below.

6.1.1.

Communications Settings between the Personal Computer and the RFID
Reader/Writer

The setting example below is used to explain the procedure for setting the RFID

Reader/Writer by using the personal computer.

Setting item

Personal computer used for setting

RFID Reader/\Writer

IP address

192.168.1.1

192.168.1.200 (Default)

Subnet mask

255.255.255.0

255.255.255.0 (Default)

Gateway

192.168.1.254 (Default)

*In this document, the gateway setting is unnecessary because the connection is made in

the same segment.

6.1.2.

Communications Settings between the Controller and
Reader/Writer

the RFID

The setting example below is used to explain the procedure for connecting the Controller to
the RFID Reader/Writer.

Setting item

NJ501-1500

RFID Reader/Writer

IP address

192.168.250.1

192.168.250.2

Subnet mask

255.255.255.0

255.255.255.0 (Default)

Gateway

192.168.1.254 (Default)

Host name

“V750-BA50C04-US” (Default)

Domain name

Blank (Default)

DHCP

OFF (Default)

TCP/IP port

(This is set by the program.)

7090 (Default)

*In this document,

the same segment.
*This project file uses the default settings (keep-alive: use, linger option: Do not use) of the
keep-alive and linger option functions for the TCP socket communications. Use these

functions according to the system when necessary.

the gateway setting is unnecessary because the connection is made in

6. Ethernet Communications Settings

I 6.2. Example of Checking Connection

This document shows an example of a Structured Text (ST) program in which the Controller
executes the connect processing, send/receive processing, and close processing on the RFID
Reader/Writer.
The Controller and RFID Reader/Writer send and receive the message of “GETR TYP FWV
(read the product type and firmware version of the memory data)’. The following figure

outlines the operation.

Local_
SrcData

Local_
RecvData

Ethernet

RFID Reader/Writer

Controller
Projectfile | G
ocke
ST Program communications
: function :
IF . THEN .c-.o.c-'o.c-'o.o-'o.o.?
ELSE

Connect processing

>

Specifying Ethernet
communications

Reading the type and firmware
version

Sending/Receiving Ethernet
command

Reading the product type and
firmware version

| |
Send data

Variable [i |
Send data >
setting area
Receive data
Receive data BEERRE |
sefting area | 4 P —
Close processing
> >
<

10

7. Connection Procedure

7. Connection Procedure

This section describes the procedure for connecting the RFID Reader/Writer to the Controller

via Ethernet.

This document explains the procedures for setting the Controller and RFID Reader/Writer
from the factory default setting. For the initialization, refer to Section 8 Initialization Method.

I 7.1. Work Flow

Take the following steps to connect the RFID Reader/Writer to the Controller via Ethernet.

“ 7.2 Setting Up the RFID Reader/Writer

!

7.2.1 Parameter Setting

!

7.3 Setting Up the Controller

!

7.3.1 Starting the Sysmac Studio and
Importing the Project File

!

7.3.2 Checking the Parameters and
Building

!

7.3.3 Connecting Online and
Transferring the Project Data

!

7.4 Connection Status Check

!

7.4.1 Executing the Program and
Checking the Receive Data

Precautions for Correct Use

Set up the RFID Reader/Writer.

Set the parameters of the RFID Reader/Writer.

Set up the Controller.

Start the Sysmac Studio, and import the project file.

Check the set parameters, execute the program
check on the project data and build the Controller.

Connect online with the Sysmac Studio and transfer
the project data to the Controller.

Execute the program and confirm that Ethernet
communications are normally performed.

Execute the program and confirm that the correct
data are written to the variables of the Controller.

Prepare the latest project file in advance.

To obtain the file, contact your OMRON representative.

11

7. Connection Procedure

I 7.2. Setting Up the RFID Reader/Writer
Set up the RFID Reader/Writer.

7.2.1. Parameter Setting
Set the parameters of the RFID Reader/Writer.
For the setting, a web browser (e.g., Internet Explore) that can execute Java software is
required. Install necessary software so that Java software can operate.
Set the IP address of the personal computer to 192.168.1.1.

IEI Precautions for Correct Use

Set the parameters of the RFID Reader/Writer by using the Ethernet communications of the
personal computer.

Note that you may need to change the settings of the personal computer depending on the
status of the personal computer.

1 Connect the antenna to the gAHR AAAAR—AAAAR
antenna port on the side of the = Fr-Y
RFID Reader/\Writer. ‘ (@ @| L= _@ ﬁ' ®
1

Control port Antenna port

(Side of RFID Reader/Writer)

2 Connect the Switching Hub to Mode switch
the Ethernet port on the other C e R R A H R i H_.-'H o amans
side of the RFID Reader/Writer —r —
to using the LAN cable. ‘ Jgrminm)
Connect the included AC j| 0 IE y
Adapter cable to the DC power

DC Power input Ethernet port
RS-232C port Input/Output port

(Other side of RFID Reader/Writer)

input.

12

7. Connection Procedure

3

Start Internet Explorer from the
personal computer that is
connected to the Switching Hub.

*Set the IP address of the
personal computer to
192.168.1.1. Use the following
procedure to check the IP
address of the personal
computer.

(1)Click Connect to the
Internet View network status
and tasks - Change adapter
settings on the Control Panel.

(2)Double-click Local Area
Connection on the Network
Connections.

(3)Click the Details Button on
the Local Area Connection
Status Dialog Box.

(4)Confirm that the IP address is
192.168.1.1.

£

Internet
Explorer

= Network Connection Detail

Value

Intel(R) 82575LM Gigabit Metwork Coil

L
No

255.2!!.255.D

Organi Genera Network Connection Details:
o Connection Property
_&Jn 1Pv4 Connectivi Connection-specific DN...
o IPv& Connectivil Descfription
Local Media State: Eh}:';l;aénﬁilr?s
Conneg| . ables
Buration: IPv4 Address
Speed: IPv4 Subnet Mask
Ivd Diefault Gatewa'y
IPv4 DNS Server
Activity IPv4 WINS Server
NetBIOS over Tepip En...
i ot
Packets: - i

Click Tool (%) on the command
bar of Internet Explorer and
select Internet options.

2 zbout:blank

= Blank Page

File
Zoom (100%)
Safety

View downloads
Manage add-ons
F12 developer tools

Go to pinned sites

Internet options

About Internet Explorer

13

7. Connection Procedure

5

The Internet Options Dialog Box
is displayed. Select the
Connections Tab.

General |Security I Privacy I Contentl Connections IPrograms I Advanced|

Home page
l/’ To create home page tabs, type each address on its own line.
u
) about:blank] -

[Use current][Use default][Use blank

Browsing history

1 Delete temporary files, history, cookies, saved passwords,
¥ and web form information.

Delete browsing history on exit

Delete... ” Settings]

Change search defaults.

Change how webpages are displayed in
tabs.

Appearance

[Calors ” Languages H Fonts H Accessibility l

” Cancel] Apply

6

The Internet Options Dialog Box
is displayed. Click the LAN
settings Button.

| General | security | Privacy | Content | Connections | programs | Advanced

To set up an Internet connection, dick Setup
Setup.

Dial-up and Virtual Private Network settings

&5 Controller OMRON USB Directline #2

Remove...

Choose Settings if you need to configure & proxy
server for a connection.

@ Never dial a connection
_ Dial whenever a network connection is not present
() Always dial my default connection

Current Mone Set default

Local Area Network (LAN) settings

LAM Settings do not apply to dial-up connections.
Choose Settings above for dial-up settings.

LAM settings

14

7. Connection Procedure

V4 The Local Area Network (LAN)
Settings Dialog Box is

" Local Area Network (LAN) Setti

dlsplgyed. Automatic configuration
Confirm that the Use a proxy Automatic configuration may override manual settings. To ensure the
server for your LAN Check Box :

; use of manual settings, disable automatic configuration.
is cleared from the Proxy server

jcally d j
Field, and click the OK Button. [futomatically detect settings

|:| Use automatic configuration script

Address

Proxy server

F 1lse a proxy server for your LAN (These settings will not apply to
dial-up or VPN connections).

Address: Port: Advanged

Bypass proxy server for local addresses

oK] [Cancel

8 Click the OK Button on the

Internet Options Dialog Box.

| General | security | Privacy | Content | Connections | pragrams | Advanced
To set up an Internet connection, dick

Setup.

Dial-up and Virtual Private Network settings

&5 Controller OMRON USE Directline #2

Add VEN...

Remove...

Choose Settings if you need to configure a praxy Settings
server for a connection.

@ Never dial a connection
() Dial whenever a network connection is not present
() Always dial my default connection

Current Morne Set default

Local Area Metwork (LAN) settings

LAN Settings do not apply to dial-up connections. LAN settings
Choose Settings abowve for dial-up settings.

I 0K I Cancel Apply

15

7. Connection Procedure

Type http://192.168.1.200
/ in the address bar (=) of
Internet Explorer.

Eirmware Update

[m »

'ReaderSetlmgs | Comm. Settings ‘Operaliuﬂ Seﬂings‘ Comm. Test | Utility ‘

Reader Status
The Reader Status Window is
displayed. Click the Reader ssontn |

Settings Button.
Product Type V750-BA5S0C04-US

Firmware Version 102-102-103-0

i —— ™
L V750 Operstion Warng e G
The V750 Operation Warning

Dialog Box is displayed. Click The web operation might affect
the OK Button. the control from command line
interface (Ethermnet’R3-232C).

OK Cancel

10

The Reader Settings Window

shows the Ethernet Settings. o) (2 http://192.168.1.200/ £~ B¢ X | 2 viso-asocd-us
Make the settings as follows and Reader Settings
click the Save Button.
Reader Information IEI

Host Name ReaderName |

:V750-BA50C04-US Readerfole |
Domain Name Ethernet

:Blank Host Nams [V750-BAG0CT4-Us
DHCP: OFF Oomain Name || L
IP Address e [——

:192.168.250.2 Subnet Mask 255:255:255:0
Subnet Mask Gateway A

:255.255.255.0 rermrer \T -
Gateway

:192.168.1.254
TCP/ |P7PO%"(t) *The gateway setting is unnecessary. However, if you

leave the Gateway Field blank, an error will occur.

*If the settings are different from Therefore, use the default setting.
the above, change the
corresponding set values.

Exit Internet Explorer.

*If Internet Explorer does not
exit, the IP address of the RFID
Reader/Writer will be changed
and the screen will not be
displayed.

16

7. Connection Procedure

11

Cycle the power supply to the
RFID Reader/Writer.

*The new parameters will be
enabled after the power supply
is cycled.

Additional Information

In addition to changing the Ethernet settings on the web browser screen, you can set and
read the Ethernet parameters by using the setting commands (SETR and GETR). For
information on the specifications of the setting commands, refer to Section 5 Command Line
Interface in the V750-series UHF RFID System User’s Manual (Cat. No. Z235).

17

7. Connection Procedure

I 7.3. Setting Up the Controller
Set up the Controller.

7.3.1. Starting the Sysmac Studio and Importing the Project File
Start the Sysmac Studio and import the project file.
Install the Sysmac Studio and USB driver beforehand.

1 Confirm that the personal

computer is connected to the
Controller through a USB cable,
and turn ON the power supply to
the Controller.

Start the Sysmac Studio and
click the Import Button.

*If a confirmation dialog for an

access right is displayed at
start, select to start.

2 The Import File Dialog Box is
displayed. Select

Organize « New folder B= ~ @
OMRON_V750_ETN(TCP)_EV ——
7.0 Favorites B
101.smc and click the Op en |8 Downloads || B OMRON_V750_ETN(TCF)_EV101.sme |
5l Recent Places
Button. M Deskop |°
w4l Libraries
. . . @ Documents
*Obtain the project file from T
[&5] Pictures
OMRON' B videos
o Homenarnun =
File name: OMRON_V750_ETN(TCP)_EV101l.st v | Sysmac Studio project file (*sm +
e [

3 OMRON_V750_ETN(TCP)_EV
101 project is displayed.
The left pane is called Multiview
Explorer, the right pane is called
Toolbox and the middle pane is
called Edit Pane.

*If an error dialog box is
displayed, check the version of
the Sysmac Studio.

Multiview Edit Pane Toolbox
Explorer

18

7.3.2.

7. Connection Procedure

Checking the Parameters and Building

Check the set parameters, execute the program check on the project data and build the

Controller.

1 Double-click Built-in

EtherNet/IP Port Settings
under Configurations and
Setup - Controller Setup in the
Multiview Explorer.

The Built-in EtherNet/IP Port
Settings Tab Page is displayed
in the Edit Pane.

Click the TCP/IP Settings
Button, select the Fixed setting
Option in the IP Address Field,
and confirm that the following
settings are made.

*IP address: 192.168.250.1
*Subnet mask: 255.255.255.0
*Default gateway:

o ._._(blank)

¥ Configurations and Setup
e EtherCAT

p = CPU/Expansion Racks
«* IO Map

¥ 3 Controller Setup
ff Operation Settings

» it Motion Control Setup

I'l-in EtherMet/IP Port Sx

Vo

w IP Address
O Fixed setting
N[192 . 168 . 250. _ 1

Subnet mask EREERPEEIPLEINL]

Default gateway GGG

@ Obtain from BOOTP server.
@ Fix at the IP address obtained from BOOTP server.

Double-click the Task Settings
under Configurations and
Setup in the Multiview Explorer.

> Event Settings

4 Data Trace Settings

The Task Settings Tab Page is
displayed in the Edit Pane.
Click the Program Assignment
Settings Button and confirm
that ProgramO is set under
PrimaryTask.

igurations and Setup

Task Settings

7 El

¥ I PrimaryTask

@ 1 Program0O

P '+

Select Check All Programs
from the Project Menu.

— . ler _Si ; I

Check All Programs F7
Check Selected Programs Shift+F7

Build Controller F&
Rebuild Controller

19

7. Connection Procedure

6 The Build Tab Page is displayed
in the Edit Pane.
Confirm that “0 Errors” and “0
Warnings” are displayed.

Program | Location

7 Select Rebuild Controller from Project Controller Simulation Toc

the Project Menu. Check All Programs F7
Check Selected Programs Shift+F7
Build Controller Fg
Rebuild Controller
Shift+F8
A screen is displayed indicating iy s

the conversion is being
performed.

il

Build Tab Page | I Cescnption | Program | Location

8 Confirm that “0 Errors” and “0
Warnings” are displayed in the

20

7. Connection Procedure

7.3.3. Going Online and Transferring the Project Data
Connect online with the Sysmac Studio and transfer the project data to the Controller.

Always confirm safety at the destination node before you transfer a user

program, configuration data, setup data, device variables, or values in memory
used for CJ-series Units from the Sysmac Studio.

The devices or machines may perform unexpected operation regardless of the
operating mode of the CPU Unit.

1 Select Change Device from the | Controller Simulation Tools Help

Controller Menu. Communications Setup...
Change Device
Cnline Ctrl+W
Ctri+Shift+W

2 The Change Device Dialog Box
is displayed.
Confirm that the Device and

Change De_ u

.-ﬂﬂ Select Device

Version are set as shown on the

right and click the OK Button. ey Controller
Device ‘WIS01 v - 1500 0
*If the settings are different from Version 1.02
the above, change the values
from the pull-down list. OK

3 If settings were changed in step
2, the Build Dialog Box is
displayed. Click the Yes Button.

Do you want to execute the build?

*This dialog box is not displayed
if no change was made. Yes | Mo

4 Select Communications Setup Controller Simulation Tools Help
from the Controller Menu. Communications Setup...
Change Device

Cnline Cirl+W
Ctrl+5hift+W

21

7. Connection Procedure

The Communications Setup e =

'¥ Connection type
D |a Iog BOX |S d |S p Iayed . swg ;I-::-:n:;;m:au; the Controller to use every time you go online.
. . . ® Direct connection via Ethemet
Select the Direct Connection via (Q bt

@ Ethemnet connection via a hub

@ Select one method from these options at every online connection.

USB Option from Connection B lect connection ia 8

Ml Direct connection via Ethemet
B Remote connection via USB

Type . B Ethernet connection via a hub

Click the OK Button. ¥ Remote b Address

Select a method ta connect with the Controller to use every time you go online.

USB Communications Test Ethemet Communications Test
¥ Options

K Confirm the serial ID when going online.
K Check forced refreshing when going offline.

¥ Response Monitor Time

Set the Response Monitor Time in the communications with the Controller.

2 (]
Select Online from the . Controller Simulation Tools Help
Controller Menu. Cammunications Setup...

Change Device

*If the dialog on the right is Online Ctrl+W
displayed, the model or version Cirl+Shift+W
of the Controller does not
match those of the project file.

Check the settings of the Sysmac studio

project file, return to step 1 and |

try again_ Cantl_'oller model ncﬂ_: matched.
Click the OK Button to close Comroller: 15011500

the dialog box.
Check the following:
- Check the controller to connect (connection method) in the communications settings.
- Is the controller model set in the project matched with the target controller model?

[Tox T

Sysmac Studio

The device 'version' set in the project is newer than the 'version' of the connected Controller.

Device version set in the project: 1.03
Version of the connected Controller: 1.00

Check the device "version® set in the project.

o

22

7. Connection Procedure

7 A confirmation dialog is

displayed. Click the Yes Button.

*The displayed dialog differs
depending on the status of the
Controller used. Click the Yes
Button to proceed with the
processing.

*The displayed serial ID differs
depending on the device.

F

Sysmac Studio

The CPU Unit has no name.
Do you want to write the project name [new_NJ501_0] to the CPU Unit name? (Y/N)

e

.
Sysmac Studio

Senial ID not matched.

Project:
Mame: [new_NJ501_0]
Serial ID: [L701-31810-9999]

Controller:
Mame: [new_NJ501_0]
Serial ID: [L701-08111-0104]

Do you want to continue the connection processing? (Y/N)

Sysmac Studio

Do you want to change the Serial ID in the project to the controller's Senal ID? (Y/N)
{1t will be used at the ID check of next online connection.)

@ Additional Information

For details on the online connections to a Controller, refer to Section 5 Going Online with a
Controller in the Sysmac Studio Version 1.0 Operation Manual (Cat. No. W504).

8 When an online connection is
established, a yellow bar is
displayed on the top of the Edit
Pane.

<, Configurations and Setup

e] Select Synchronization from
the Controller Menu.

Controller Simulation Tools Help

Ctrl+W
Oiffline Ctri+Shift+W
Synchronization Ctrl+M

23

7. Connection Procedure

10 The Synchronization Dialog Box

is displayed.

Confirm that the data to transfer
(NJ501 in the right figure) is
selected. Then, click the
Transfer to Controller Button.

*After executing the Transfer to
Controller, the Sysmac Studio
project data is transferred to the
Controller and the data are
compared.

Syl:\dﬁr::.zr.'ﬂ-za;ti.nn
| | Computer: Data Name (C:
NJ501

DController: Update D Controller: Data Name ~Compard]

Legend: | Synchronized

B Clear the present values of variables with Retain attribute (Valid for Transfer to Controller).

B Do not transfer the program source (Valid for Transfer to Controller). All data will be re-transferred when this option is changed.
K Do not transfer Special Unit parameters and backup parameters of EtherCAT slaves (out of synchronization scope).

[2} Al data will be transferred because the controller has no data.

Transfer To Controller Close

11

A confirmation dialog is
displayed. Click the Yes Button.

A screen stating "Synchronizing"
is displayed.

A confirmation dialog box is
displayed. Click the Yes Button.

Sysmac Studio

Confirm that there is no problem if the controller operation is stopped.

The operating mode will be changed to PROGRAM mode. Then, EtherCAT slaves will be reset and forced refreshing will
be cancelled.

Do you want to continue?(¥/N)

r — ~
Sysmac Studio

Confirm that there is no problem if the controller operation is started.
The operating mode will be changed to RUN mode.
Do you want to continue?(Y,/N)

12

Confirm that the synchronized
data is displayed with the color
specified by “Synchronized” and
that a message is displayed
stating "The synchronization
process successfully finished".
If there is no problem, click the
Close Button.

*A message stating "The

synchronization process
successfully finished" means
that the project data of Sysmac
Studio and that of the Controller
match.

*If the synchronization fails,
check the wiring and repeat the
procedure described in this
section.

Synchronization

| | tomputer: Data Name [Computer: Update DaController: Update Dd ~ Contralier: Gaiw. X=me [Comparef
A NJ501 2013/01/07 11:06:33 - =

Legend: ' Synchronized

[t chcked |

B Clear the present values of variables with Retain attribute (Valid for Transfer to Controller).
B Do not transfer the program source (Valid for Transfer to Controller). All data will be re-transferred when this option is changed.
K Do not transfer Special Unit parameters and backup parameters of EtherCAT slaves {out of synchronization scope).

_——
1 The Synchronization process successfully finished.

[Close

24

7. Connection Procedure

I 7.4. Connection Status Check

Execute the program and confirm that Ethernet communications are normally performed.

/\ Caution

Sufficiently confirm safety before you change the values of variables on a Watch
Tab Page when the Sysmac Studio is online with the CPU Unit. Incorrect
operation may cause the devices that are connected to Output Units to operate
regardless of the operating mode of the Controller.

El Precautions for Correct Use

Please confirm that the LAN cable is connected before proceeding to the following steps.
If it is not connected, turn OFF the power to the devices, and then connect the LAN cable.

7.4.1. Executing the Program and Checking the Receive Data
Execute the program and confirm that the correct data are written to the variables of the

Controller.

1 Confim that RUN mode i
displayed on the Controller ONLINE @& 192.168.250.1
Status Pane of the Sysmac ERR/ALM & RUN mode
Studio.

Controller Simulation Tools Help
If PROGRAM mode is shown, l

select Mode - RUN Mode from

Ctrl+W

the Controller Menu. Cfline Ctrl+ShiftsW b
Synchronization Cirl+M
Mode * RUN Mode... Ctrl+3
i Ctrl+1

A confirmation dialog box is
displayed. Click the Yes Button.

Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (Y/N)

2 Select Watch Tab Page fromthe = \iew Insert Project Controller Simulatio

View Menu. Output Tab Page Alt+3
Watch Tab Page Alt+4
Cross Reference Tab Page Alt=5
Build Tak Page Alt+6

3 The Watch Tab Page 1 is

SiOutput Tab Page A, Build Tab Page [73 Watch Window (Proj

| Online value | Modify | Data type VAT | Diapiay format

7. Connection Procedure

displayed in the lower section of
the Edit Pane.

Confirm that the variables shown
on the right are displayed in the

Program0.Input_Start — Start input
Name Columns.
Program.Output_ErrCode ——» Error codes
*To add a variable, click Input Program{.Cutput_skiCmdsErroriD
Name... Program{.Output_sktCloseErroriD TCP
*Program0 of the Name is Program.CQutput_MErCode —- _ connection
omitted from the following Programd.Qutput_EtnTcpsta status
descriptions. Program{.ETM_SendMessageSet_instance.Send_Data
ProgramQ.Output_Recvhiess \
Programd.Local_Status \
= X
/ Y ¥

Program execution status Receive data Send data

Click TRUE on the Modify E IOnline valuel Modify
Column of Input_Start Program.Input_Start =100 TRUE FALSE
g B
The Online value of Input_Start Name IOnline valuel Modify
Program@.Input_Start rue) FALSE

changes to True.

The program will be operated
and Ethernet communications
will be performed with the
destination device.

7. Connection Procedure

6 When the communications ends |Online valuel Modify
ProgramQ.Input_Start

normally, each error code
changes to 0.

ProgramQ.Output_ErrCode
Program{.Cutput_skiCmdsErroriD

The TCP connection status Programd.Qutput_sktCloseErrorlD
(Output_EtnTcpSta) changes to Program{.Output_MErrCode 0000 0000
_CLOSED. Program{.Cutput_EtnTcpSta _CLOSED

*In the case of error end, the
error code corresponding to the
error is stored. For details on
error codes, refer to 9.7 Error

Process. Program0.Local_Status

TRUE FALSE
The Online value of TRUE FALSE

TRUE FALSE

Local_Status.Done, which
indicates the execution status of
the program, changes to True. In
the case of error end,
Local_Status.Error changes to
True.

*When Input_Start changes to
FALSE, each Local_Status
variable also changes to False.
For details, refer to 9.6 Timing

Charts.
7 The response data received from
the destination device is stored Program0.ETN_SendMessageSet_instance.Send_Data
in Output_RecvMess. Frogram0.Output_RecviMess
(ETN_SendMessageSet_instanc Online value |
e.Send_Data is a send GETR typ fwviL
command.) GETRO000 typ=%$"V750-BA50C04-US$" fwv=102-102-103-03L

In the Watch Tab Page 1, specify
an area to reference as shown in Receive data

the right figure. *Send command: “GETR”
*Response code: “0000” (normal)
*The response data differ *Model: "typ=$"V750-BA50C04-US$™

depending on the device used *Firmware version: “fwv=102-102-103-0"
*Terminator: “$L"([LF])

*Refer to 9.2. Destination Device

Command for details on the

command.

27

8. Initialization Method

8. Initialization Method

This document explains the setting procedure from the factory default setting.
If the device settings are changed from the factory default setting, some settings may not be
applicable as described in this procedure.

I 8.1. Controller

To initialize the settings of the Controller, select Clear All Memory from the Controller Menu of
the Sysmac Studio.

' ™
Clear All Memory E=NFEETE

~ Clear All Memory

This function initializes the target area of destination Controller.
Confirm the area to initialize first, and press the OK button.

CPU Unit MName: new MNI501_0
Model: MNJ501-1500
Area: User Program
User-defined Valiables
Controller Configurations and Setup
Secunity Information
Settings of Operation Authornity(initialization at the next onling)

B Clear event log

28

8. Initialization Method

| 8.2. RFID Reader/Writer

Use the following procedure to initialize the settings of the RFID Reader/Writer.

1 Press the mode switch at least Mode switch
one second and start the Safe
AAAAA—AAAARA HHHHH.—|F|F|F|F|F|

Mode of the RFID F—
Reader/Writer. j‘ (P
[

DC Power input Ethernet port
RS-232C port Input/Output port

(Side of the RFID Reader/Writer)

2 Type “http://192.168.1.200/" in v
the address bar (é) of the «3 £~ B¢ % | 2750 BAS0C04-US [Safe Mo...

Internet Explorer. =
omRon Firmware Update d

The Safe Mode Window is

displayed. Click the Init All

Settings Button.

The RFID Reader/Writer will be it an setings ||

initialized and restarted. Reader Status

Reder Type V750-BAS0C04-US
Firmware Version 010-000-000-0 -

Reset System

*The firmware version in the
safe mode is 010-000-000-0.

’g Additional Information

For the initialization of the RFID Reader/Writer, refer to Mode switch in Names and Functions
of Components in Reader of Section 2 Specifications and Performance and Mode in Section
3 Mode and Function in the V750-series UHF RFID System User's Manual (Cat. No. Z235).

29

9. Program

9. Program

This section describes the details on the program in the project file used in this document.

I9.1. Overview
This section explains the specifications and functions of the program used to check the
connection between the RFID Reader/Writer (V750 series) (hereinafter referred to as
destination device) and the Controller (built-in EtherNet/IP port) (hereinafter referred to as
Controller).

This program uses the socket service functions of the Controller to execute “GETR TYP FWV
command (read the product type and firmware version of the memory data)’ on the
destination device and to detect a normal end or an error end.

The normal end of this program means a normal end of the TCP socket communications.
The error end means an error end of the TCP socket communications and an error end of the
destination device (detected with the response data from the destination device).

% Additional Information

OMRON has confirmed that normal communications can be performed using this program
under the OMRON evaluation conditions including the test system configuration, version of
each product, and product Lot, No. of each device which was used for evaluation.

OMRON does not guarantee the normal operation under the disturbance such as electrical
noise and the performance variation of the device.

% Additional Information
With Sysmac Studio, add the prefix “10#" (possible to omit) to decimal data and the prefix
"16#" to hexadecimal data when it is necessary to distinguish between decimal and
hexadecimal data. (e.g., “1000” or “10#1000” for decimal data and “16#03E8” for
hexadecimal data, etc.)
Also, to specify a specific data type, add the prefix “<data type>#". (e.g., “UINT#10#1000”
and “WORD#16#03E8”, etc.)

30

9. Program

9.1.1. Communications Data Flow
The following figure shows the data flow from when the Controller issues command data

with TCP socket communications to the destination device until when the Controller

receives the response data from the destination device. This program executes a series of

processing from the connect processing to the close processing continuously. The receive

processing is repeated when the response data is divided and multiple receive data are

sent.

Connect processing

!

Sending a command

!

Receiving a response

!

Close processing

The Controller issues a TCP open request to the
destination device, and establishes a TCP
connection.

The Controller issues a send message (command
data), which is set in the program, to the destination
device.

The Controller receives the receive message
(response data) from the destination device and
stores it in the specified internal variable.

The Controller issues a close request to the
destination device, and terminates the TCP
connection.

*The response data is not sent after receiving command data or the response data is
sent immediately after a connection is established depending on the destination device

and command. With this program, the Send/Receive processing required/not required
setting can be set for the General-purpose Ethernet communications sequence setting

function block.

If Send only is set, the response data receive processing is not performed. If Receive

only is set, the command data send processing is not performed.

31

9. Program

9.1.2. TCP Socket Communications with Socket Service Instructions
This section explains the TCP socket communications performed by using the TCP socket
service function blocks (hereinafter referred to as socket service instructions) and outlines

the general operation of the send/receive message.

’% Additional Information

For details, refer to Communications Instructions in Section 2 Instruction Descriptions of the
NJ-series Instructions Reference Manual (Cat. No. W502).

o TCP Socket Services with Socket Service Instructions
This program uses the following 5 types of standard instructions to perform socket
communications.

Name Function blocks Description

Connect TCP SktTCPConnect Connects the TCP port of the destination device.

Socket

TCP Socket SktTCPSend Sends data from a specified TCP socket.

Send

TCP Socket SktTCPRcv Reads the data from the receive buffer for a

Receive specified TCP socket.

Close TCP SktClose Closes a specified TCP socket.

Socket

Read TCP SktGetTCPStatus | Reads the status of a specified TCP socket.

Socket Status By using this instruction, this program checks if the
receive processing is completed at the receive
processing and checks the closing status at the
close processing.

*The socket obtained by the Connect TCP socket instruction (SktTCPConnect) is used as
an input parameter for another socket service instruction. The data type of Socket is

structure _sSOCKET. The specifications are as follows.
Variable Meaning Description Data type Valid range Default
Socket Socket Socket sSOCKET - -
Handle Handle Handle for data UDINT Dependson | -
communications data type
SrcAdr Local Local address *1 _sSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type
DstAdr Destination | Destination address *1 _sSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type

*1: The address indicates an IP address and a port number.
*2: A DNS or Hosts setting is required to use a host name.

32

eSend/Receive message

9. Program

Send message . o - . . -
- Destination
Controller Header Command data Terminator device
) L
<
ReCelve message *k *k *k *k *k *k *k *k *k *k *k
(Response)
Header Response data Terminator
Receive message *% *% *% *k *% Fok Hok sok Fok *ok
(Error response)
Header Response data (Error code) Terminator

eCommunications sequence

TCP communications are performed between the destination device (server) and the

Controller (client) in the following procedure.

Controller

(Client)

Destination
device
(Server)

Accept
v processing
Connect | Connection requested R
processing g
...........) AT
Connection
..... established |
Data send Send data R
rocessin
Acknowledgement (ACK)
4
Next data Data receive
send processin request
Send data Data send
- \ request
Acknowledgement (ACK) |
\ 4
Data receive Next data
request <]
4 4
Close Close
processing processing
............ s R S
Connection Connection
closed H closed

33

9. Program

I 9.2. Destination Device Command

This section explains the destination device command used in this program.

9.2.1. Overview of the Command
This program uses “GETR TYP FWYV (read the product type and firmware version of the
memory data) command” to read the information of the destination device.

Command Description
GETR Read the Reader/Writer settings.

’% Additional Information

For details, refer to Section 5 Command Line Interface in the V750-series UHF RFID System
User’s Manual (Cat. No. Z235).

9.2.2. Detailed Description of the Command
This section explains the formats used to read the information on the destination device by
executing the GETR TYP FWV (read the product type and firmware version of the memory
data) command.

eCommand format of the send message
This is the command format of the message that is sent by the Controller to the destination
device according to the setting of the GETR TYP FWV (read the product type and firmware
version of the memory data) command.
*ASCII codes are sent except for the header and terminator.

Data Number of bytes Remarks
Command code 4 Fixed: "GETR”
(Space *1) 1 Fixed:” ” (Space)
(Parameter and 1and greater | Fixed: "typ” (product type) + "+’fwv” (firmware
option *1) *2 .
version)
Terminator 1 Fixed: [LF](16#0A)

*1: When this is not used, the terminator is moved forward.
*2: Any number of bytes can be set for parameters and 3 bytes for options.

34

9. Program

eCommand format of the receive message
This is the response format of the message received by the Controller from the destination
device according to the setting of the GETR TYP FWV (read the product type and firmware
version of the memory data) command.

*ASCII codes are received except for the header and terminator.

Command ML Remarks
of bytes
Command code 4 Fixed: "GETR” or Fixed: "ICMD”
Response code 4 Destination error code
(Refer t0 9.7.1. Error Code List.)
(Space *) 1 Fixed: ”” (Space. Data are separated by a space.)
(Response data *) 1 and Fixed:
greater | "typ=$”[product type V750]$”” (The product type is
enclosed in $ and $".)"fwv=[Firmware version]’
(Firmware version)
(The information of GETR command options specified
with this program is returned.)
Terminator 1 Fixed: [LF](16#0A)

*The terminator is moved forward for an error message when there is no response data

because the command is undefined or the parameter of the send command is illegal.

9.2.3. Command Settings
This section explains the details on the settings of the GETR TYP FWV (read the product
type and firmware version of the memory data) command.

eSend data (command) settings
The send data is set in the SendMessageSet function block.

Variable

Contents (Data type) Set value

Send_Header

Send header (STRING[5]) “(Setting unnecessary)

Send_Addr

Send address (STRINGI[5]) “(Setting unnecessary)

Send_Command

Send data (STRING[256]) CONCAT(GETR’, typ,’ fwv')

Send_Terminate

Send terminator (STRING[5]) | ‘SL’ ([LF]: 16#0A)

Contents

Variable Data Description
(Data type)
CONCAT(Send_Header,
Send_Addr,
Send message — ’ Used as send data of
Send_Data | sTR|NG[256)) Send_Command, | g\ TcpSend instruction.
Send_Check,

Send Terminate)

35

eReceive data (response) that is stored
After a data check is performed on the receive data using the ReceiveCheck function block,

the receive data is stored as output receive data.

9. Program

Variable Description (data type) Storage area
Receive data ,
Recv_Buff Receive buffer
(STRING[256])
Receive data Receive data storage area
Recv_Data)
(STRING[256]) (stores the receive buffer data)

eSend/Receive message

*Send message

47 45 54 52 20 74 79 70 20 66 77 76 0A
lGl IEI lTl lRl L} ltl lyl ﬁpi U] lf1 ‘W‘ ivi [LF]
Send command Terminator
*Receive message 1 (at normal process)
47 | 45 | 54 | 52 | 30 | 30 | 30 | 30 | 20 | 74 | 79 | 70 | 3D | 22
1Y E T R 0000 ™ m 'y = P
Command Response code Data (parameter)
22 20 66 77 76 3D 0A
= m v oy = : ILF]
Product type Data (parameter) Version Terminator
*Receive message 2 (at error process)
47 | 45 | 54 | 52 0A
IGI IEI ITI IRI [LF]
Command Response code Terminator

*Receive message 3 (at error process: undefined)

49 43 4D 44 0A
IIl ICI IMI IDI [LF]
Command Response code Terminator

36

9. Program

I 9.3. Error Detection Processing

This section explains the error detection processing of this program.

9.3.1. Error Detection in the Program
This program detects and handles errors of the following items (1) to (4). For information
on error codes, refer to 9.7. Error Process.

Controller

Destination device

Ethernet cable

(1)Communications errors in TCP socket communications using socket service instructions
Errors occurred in the program during TCP socket communications such as command
format error and parameter error are detected as communications errors. An error is
detected with the socket service instruction argument ErrorID.

(2)Timeout errors during communication with the destination device
When the connect processing, send processing, receive processing, or close processing is
not normally performed and cannot be completed within the monitoring time, it is detected
as a timeout error. An error is detected with the time monitoring function in the program.
For information on the time monitoring function of the timer in the program, refer to 9.3.2.
Time Monitoring Function.

(3)Errors in the destination device (Destination device error)
The destination device errors include a command error, a parameter error, and an
execution failure in the destination device. An error is detected with the response code,
which is returned from the destination device when an error occurs. For information on the
send/Receive messages, refer to 9.2. Destination Device Command.

Recei ‘GETR’ . ‘0000" Kook . 16#0A
eceive message — — e ,
at normal process Command code ! eggggse ' esponse data ' Terminator
. ‘GETR’ L sk 16HOA
Receive message = .
at error process Command code | ~ESPONS€ i rorminator
code '
Receive message ‘ICMD’ ! Fokkk L 16#0A
at error process for \ Response \ i
undefined command Command code ! code © Terminator

37

9. Program

(4)TCP connection status error that occurs when ending the processing

This program always performs the close processing at the end of the whole processing
regardless of whether each processing from the connect processing to the receive
processing ends normally or in an error. The TCP connection status variable TcpStatus of
the SktGetTCPStatus instruction is used to detect whether the close processing ended
normally. When the close processing is operated abnormally, the next connect processing
may not be performed normally. For the corrective actions of the TCP connection status
errors, refer to 9.7.2 TCP Connection Status Errors and Corrective Actions.

38

9. Program

9.3.2. Time Monitoring Function
This section explains the time monitoring function of this program.
You can change the monitoring time settings by changing the variables of the
ParameterSet function block.

eTime monitoring function of the communication instruction processing
To avoid errors that keep a communications process executing without a stop, the timer in
this program is used to abort the processing (timeout). The timeout value for each
processing from the connect processing to the close processing is 5 seconds.

[Monitoring time of the communications instruction processing]

Processing | Monitoring Variable name ;Ii':]r:eeout
Connect Time from the start to the end of the TopenTime 5 seconds
processing | processing (UINT#500)
Send Time from the start to the end of the TisTime 5 seconds
processing | processing (UINT#500)
. Time from the start to the end of the

Receive processing TfrTime 5 seconds
processing (for each receive processing) (UINT#500)
Close Time from the start of the processing until TeloseTime 5 seconds
processing | the TCP socket enters the close status. (UINT#500)

eReceive waiting function for divided packets/multiple response data
To repeat the receive processing, this function enables waiting for multiple responses that
arrive continuously or the receive data that is divided. If the next response does not arrive
from the destination device within the maximum waiting time, it is detected that the receive
processing ended.

[Receive waiting time]
Processing
Receive wait

Variable name
TrTime

Monitoring
Interval to receive data

Maximum waiting time
300 ms (UINT#3)

eResend/time monitoring function of TCP/IP
When a communication problem occurs, TCP/IP automatically resends the data and
monitors the processing time if there is no error in the Controller. If the processing ends in
an error, this program performs the close processing and stops the TCP/IP resend/time
monitoring function.

*If a TCP connection status error occurs at the close processing, the TCP/IP resend/time

monitoring function may be still operating. For information on the situation and corrective
actions, refer to 9.7.2. TCP Connection Status Error and Corrective Actions.

39

9. Program

I 9.4. Variables

The table below lists the variables used in this program.

9.4.1. List of Variables
The data types, external variables (user-defined global variables/system-defined variables),
and internal variables used in this program are listed below.

eData type (Structure)
[Communications processing status flags]

Name Data type Description
sStatus STRUCT Structure of the communications processing status flags
Communications processing in progress flag
Busy BOOL TRUE: Processing is in progress.

FALSE: Processing is not in progress.
Communications processing normal end flag
TRUE: Normal end / FALSE: Other than normal end
Communications processing error end flag

TRUE: Error end / FALSE: Other than error end

Done BOOL

Error BOOL

[Socket service instruction execution flags]

Name Data type Description
sControl STRUCT Socket service instruction execution flags
Send BOOL ?;rLleEF:)E;:sigg i/nlggfgtli;nNot executed
Reov BOOL TRUE: Exeouted | EALSE: Nt executed
Open BOOL TRUE: Excouted PALSE: Not executed
Close BOOL 'IC'IL?LSJE:pg(Z?:ﬁEC? /irllit\rLuSCItEi:orl:lot executed
T e e e ey clon

[Timer enable flags]

Name Data type Description
sTimerControl STRUCT Time monitoring timer enable flags
Tfs BOOL Send processing time monitoring timer instruction

TRUE: Enabled / FALSE: Not enabled
Tfr BOOL Receive processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

Connect processing time monitoring timer instruction

Topen BOOL TRUE: Enabled / FALSE: Not enabled

Close processing time monitoring timer instruction
Tclose BOOL TRUE: Enabled / FALSE: Not enabled
Tr BOOL Receive waiting time monitoring timer instruction

TRUE: Enabled / FALSE: Not enabled

40

9. Program

[Send/Receive processing required/not required setting flag]

Name Data type Description

sComType STRUCT Send/Receive processing required/not required setting flags
Send BOOL *Ssend procgssing TRU!E: Required / FALSE: Not required

pecify this when sending a command.
Receive processing TRUE: Required / FALSE: Not required
*Specify this when receiving a response.
BOOL Send/Receive processing required/not required setting error
flag (This flag changes to ON when a setting error occurred.)

Recv BOOL

Error

eData type (Union)
[Error code processing]

Name Data type Description
uErrorFlgs UNION Error code processing union
2-byte error code is handled in units of 1 bit as 16-bit
string.

: TRUE (Error) / FALSE (Normal)
*Communications error
BoolData[0] : Send processing
BoolData[1] : Receive processing
BoolData[2] : Connect processing
BoolData[3] : Close processing
BoolData[4] : Processing number error
ARRAY[0..15] *Timeout error
OF BOOL BoolData[8] : Send processing
BoolData[9] : Receive processing
BoolData[10]: Connect processing
BoolData[11]: Close processing
*Others
BoolData[5] : Send/Receive required/not required
detection error
BoolData[12]: Destination device error
BoolData[6..7],[13..14]: Reserved
BoolData[15]: Error
WordData WORD 2-byte error code is processed as WORD at once.

BoolData

41

eExternal variables

[User-defined global variables]

9. Program

Variable name Data type Description
Communication start switch
Input_Start BOOL The program is started when this variable changes from

FALSE to TRUE.

Output_RecvMess

STRING[256]

An area that stores the receive data (response) (256
bytes)

An area that stores the error flag for a communications
error or a timeout error that is detected at the connect

Output_ErrCode WORD processing, TCP socket status read processing, receive

processing and close processing.

Normal end: 16#0000

An area that stores the error code for a communications

error or a timeout error that is detected at the connect
Output_SktCmdsErrorlD | WORD processing, TCP socket status read processing and

receive processing.

Normal end: 16#0000

An area that stores the error code for a communications
Output_SktCloseErroriD WORD error or a timeout error that is detected at the close

processing.

Normal end: 16#0000

An area that stores the TCP socket status
Output_EtnTcpSta Necslgkl_ll_\lEECTIO _ESTABLISHED: Connect status

— _ CLOSED: Close status

An area that stores the destination device’s error code for

Output_MErrCode DWORD an FCS error or destination device error that is detected

after the receive processing.
Normal end: 16#00000000

[System-defined variable]

Variable name

Data type

Description

_EIP_EtnOnlineSta

BOOL

The status of built-in EtherNet/IP port communications
TRUE: Can be used, FALSE: Cannot be used

@ Additional Information

For information on the system-defined variables, refer to Communications Instructions in 2
Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No. W502)

42

elnternal variables (instance variables)

9. Program

The internal variables used to execute the function blocks in the program are listed below.

An internal variable is called an "instance". The name of each function block to use is

specified as the data type of the variable.

[Instances for user-defined function blocks]

Variable name Data type Description
Ethernet communications parameter setting function
. block
E(;I’N_ParameterSet_lnstan ParameterSet This variable sets a destination IP address and
monitoring time for each processing from the connect
processing to the close processing.
Ethernet communications send data setting function
ETN_SendMessageSet_in SendMessageSet block

stance

This variable sets the send/receive processing
required/not required setting and send data.

ETN_ReceiveCheck_insta
nce

ReceiveCheck

Ethernet communications receive processing function
block

This variable stores the receive data and detects a
normal end or an error end.

*For information on the user-defined function blocks, refer to 9.5.3 Detailed Description of

Function Blocks.

[Instances for timer]

Variable name Data type Description
Topen_TON._instance TON Counts 'the time taken to perform the TCP connect
processing.
Tfs TON instance TON Counts 'the time taken to perform the TCP send
- - processing.
Tfr_TON_instance TON Counts _the time taken to perform the TCP receive
processing.
Tclose_TON_instance TON Counts the time taken to perform the close processing.
Tr_ TON instance TON Counts the time taken to wait for the next response.

[Instances for communications instructions]

Variable name Data type Description
SktTCPConnect_instance SktTCPConnect Connect TCP socket function block
SktTCPSend instance SktTCPSend TCP socket send function block
SktTCPRcv_instance SktTCPRcv TCP socket receive function block
SktClose_instance SktClose Close TCP socket function block
SktGetTCPStatus_instance | SktGetTCPStatus | Read TCP socket status function block

Additional Information

For information on the communications instructions, refer to Communications Instructions in

Section 2 Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No.

W502).

43

9. Program

e|nternal variables

Variable name Data type Description
Communications processing status flags
This variable is defined as sStatus structure.
Local_State DINT Processing number

An area in which an error code is edited.

Local_Status sStatus

Local_ErrCode uErrorflgs This variable is defined as uErrorFigs union.
Local_ExecFlgs sControl chket §ervicg instruction execution flags
- This variable is defined as sControl structure.
Local_SrcDataByte UINT The number of bytes to send
Local SrcData ARRAY][0..255] An area that stores the send data of the SktTCPSend
- OF BYTE instruction (256 bytes)
Local RecvData ARRAY[0..2000] An area that stores the receive data of the SkiTCPRcv
- OF BOOL instruction (2000 bytes)

An area that stores the receive data that was converted

Local_ReceiveMessage STRING[256] into a string. (256 characters)

Local ReceiveSize UINT The size of the receive data of the SkiTCPRcyv instruction
Local RecvDatalLength UINT The total byte length of the receive data
Local_RecvCHNo UINT The array number of the receive data stored in

Local RecvData
Destination device error detection instruction execution

Local_RecvCheckFlg BOOL flag

TRUE: Executed / FALSE: Not executed
Local_InitialSettingOK BOOL Initialization processing normal setting flag
Local_TONFIgs sTimerControl Timer enable flags

This variable is defined as sTimerControl structure.
Send/Receive processing required/not required setting
Local_ComType sComType flags

This variable is defined as sControl structure.

44

I 9.5. ST Program

9. Program

9.5.1.

Functional Components of the Program

This program is written in the ST language. The functional components are as follows.

Major classification

Minor classification

Description

1. Communications
processing

1.1. Starting communications
processing

1.2. Clearing the communications
processing status flags

1.3 Communications processing in
progress status

The communications processing is started.

2. Initialization
processing

2.1. Initializing the timer

2.2. Initializing the instructions

2.3. Initializing the instruction
execution flags

2.4. Initializing the timer enable flags

2.5. Initializing the error code
storage areas

2.6. Setting each processing
monitoring time and Ethernet
communications parameters

2.7. Setting the send/receive
processing required/not required
setting and send data

2.8. Converting send data from a
string to a BYTE array

2.9. Initializing the receive data
storage areas

2.10. Initialization setting end
processing

The Ethernet parameters are set and the
error code storage areas are initialized.
The send/receive required/not required
setting, send data and receive data are set.

3. Connect
processing

3.1. Determining the connect
processing status and setting the
execution flag

3.2. Enabling the connect instruction
monitoring timer

3.3. Executing the connect
instruction

The connect processing is performed.

The processing is performed
unconditionally after starting the
communications processing and executing
the initialization setting.

4. Send processing

4.1. Determining the send
processing status and setting the
execution flag

4.2. Enabling the send instruction
monitoring timer

4.3. Executing the send instruction

The processing is performed when the send
processing required/not required setting is
set to Required and the connect processing
ends normally.

5. Receive
processing

5.1 Determining the receive
processing status and setting the
execution flag

5.2 Enabling the receive waiting
time monitoring timer

5.3 Enabling the receive instruction
monitoring timer

5.4 Executing the receive instruction

5.5 Executing the TCP socket status
read processing

5.6 Executing the destination device
error detection instruction

The processing is performed when the
receive processing required/not required
setting is set to Required and the send
processing ends normally.

If multiple receive data arrive, the receive
processing is repeated.

The receive data is stored and checked.

45

9. Program

Maijor classification

Minor classification

Description

6. Close processing

6.1. Determining the close
processing status and setting the
execution flag

6.2. Enabling the close instruction
monitoring timer

6.3. Executing the close instruction

6.4. Executing the TCP socket
status read processing

The close processing is performed.

The processing is performed in the

following cases.

*When the receive processing required/not
required setting is set to Not required
and the send processing ends normally

*When the receive processing ends
normally

*When any of the connect processing, send
processing or receive processing ends in
error

7. Processing
number error
process

7. Processing number error process

The error process is performed when a
non-existent processing number was
detected.

46

9. Program

9.5.2. Program List
This section shows the details on the program.
The function blocks (ParameterSet, SendMessageSet, and ReceiveCheck) are used to
perform the communications settings, send data (command data) setting and receive data
(response data) check that must be changed according to the destination device. For
information on how to change these values, refer to 9.5.3 Detailed Description of Function
Blocks.

eProgram: ProgramO
(General-purpose Ethernet communications Connection check program)
1. Communications processing

Mame: NJ-series general-purpose Ethernet communications connection check program
Version: V1.00 New release November 29, 2012
(C}Copyright OMRON Corporation 2012 All Rights Reserved.

(* 1. Communications processing
Communications start switch: Input_Start
Communications processing status flags: Local_Status<STRUCT >
.Busy: Communications in progress
.Done: Communications normal end
.Error: Communications error end
Processing number: Local_State
10: Initialization processing
11: Connect processing
12: Send processing
13: Receive processing
14: Close processing *)

(* 1.1. Starting communications processing
Start communications processing when the communications start switch changes to ON
when communications processing status flags have been cleared. *}
IF Input_Start AND
MOT(Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEN
Local_Status.Busy:=TRUE;
Local_State:=10; //10: To initialization processing
END_IF;

(* 1.2. Clearing the communications processing status flags
Clear the communications processing status flags when the communications start switch
changes to OFF while communications processing is not in progress. *)
IF NOT Input_Start AND NOT Local_Status.Busy THEN
Local_Status.Done:=FALSE;
Local_Status.Error:=FALSE;
END_IF;

(* 1.3. Communications processing in progress status

Execute the processing correspending to the processing number (Local_State) *)
IF Local_Status.Busy THEN

CASE Local_State OF

47

9. Program

2. Initialization processing

(* 2. Initialization processing
-Perform initialization for the whole communications and set the parameters.
-Set the send data and initialize the receive data storage area. *)
10:
(* 2.1. Initializing the processing time meonitoring timer *)
Topen_TON_instance (In:=FALSE);
Tfs_TON_instance (In:=FALSE);
Tr_TON_instance (In:=FALSE);
Tfr_TON_instance (In:=FALSE);
Tclose TOM_instance(In:=FALSE);

(* 2.2. Initializing the socket service instructions *)
SktTCPConnect_instance(Execute:=FALSE);

SktTCPSend instance(Execute:=FALSE, SendDat:=Local SrcDatal01);
SktTCPRecv_instance(Execute:=FALSE, RevDat:=Local_RecvData[0]):
SktClose_instance(Execute:=FALSE);
SktGetTCPStatus_instance(Execute:=FALSE);

(* 2.3. Initializing the socket service instruction execution flags *)
Local_ExecFlgs.5end:=FALSE;

Local_ExecFlgs.Recv:=FALSE;

Local_ExecFlgs.Open:=FALSE:

Local_ExecFlgs.Close:=FALSE;

Local_ExecFlgs.5tatus:=FALSE;

(* 2.4. Initializing the processing time meonitoring timer enable flags *)
Local_TONflgs.Tfs:=FALSE;

Local TONflgs.Tfr:=FALSE;

Local TONflgs.Topen:=FALSE;

Local_TOMflgs.Tclose:=FALSE;

Local TONflgs.Tr:=FALSE;

(* 2.5. Initializing the error code storage areas *)
Local_ErrCode WordData:=WORD#16%#0000;
Output_ErrCode:=WORD+#16#FFFF;
Output_MErrCode:=DWORD#16#FFFFFFFF;
Qutput_SktCmdsErrorlD:=WORD#+16%FFFF;
Output_SktCloseErrorlD:=WORD+#16#FFFF;

(* 2.6. Setting each processing monitoring time and setting the Ethernet-related parameters *)
ETN_ParameterSet_instance(Execute:=TRUE);

48

(* 2.7. Setting the send/receive processing required/not required setting
and setting the send data *)
ETN_SendMessageSet_instance(Execute:=TRUE);

(* Detect a setting error in the send/receive processing required/not required setting. *}
Local_ComType.Send:=TestABiR(ETN_SendMessageSet_instance.ComType, 0);
Local_ComType.Recv:=TestABit(ETN_SendMessageSet_instance.ComType, 1);
Local_ComType.Error:=NOT(Local_ComType.Send OR Local_ComType.Recv):
IF Local_ComType.Error THEM

Output_ErrCode:=WORD#16+#0020;

Local_InitialSettingOK:=FALSE;

ELSE

Local_InitialSettingOK:=TRUE;
EMD_IF:

(* 2.8. Converting the send data from STRING to BYTE array *)
Local_SrcDataByte:=
StringToAry(ETN_SendMessageSet_instance.Send_Data, Local_SrcData[0]);

(* 2.9. Initializing the receive data storage areas *)
ClearString(Local_ReceiveMessage);
ClearString(Output_RecvMess);
Local_RecvCHMo:=0;

Local_RecvDatalength:=0;
Local_ReceiveSize:=UINT#256;

(* 2.10. Initialization setting end processing *)
IF Local InitialSettingOK THEM
Local_State:=11; //To 11:connect processing
ELSE
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;
Local_State:=0; //To 0: Communications not in progress status
END_IF;

9. Program

49

9. Program

3. Connect processing

(* 3. Connect processing
-Establish a connection with the destination TCP port. *)
11:

(* 3.1. Determining the connect processing status and setting the execution flag *}

(* 3.1.1. Timeout processing *)

IF Topen_TOMN_instance.) THEM
Local_ErrCode.BoolData[10]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Open:=FALSE;
Local_TONflgs.Topen:=FALSE;

Local_State:=14; //To 14: Close processing

(* 3.1.2. Normal end processing *)

ELSIF SktTCPConnect_instance.Done THEN
Local_ErrCode.BoolData[2]:= FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE:
Local_TONflgs.Topen:=FALSE:

IF Local_ ComType.Send THEN
Local_State:=12; //To 12: Send processing
ELSIF Local_ComType.Recvy THEN
Local_State:=13; //To 13: Receive processing
EMD_IF;

(* 3.1.3. Error end processing *)

ELSIF SktTCPConnect_instance.Error THEN
Local_ErrCode.BoolData[2]:=TRUE;
Output_SktCmdsErrorlD:=SktTCPConnect_instance.ErrorlD;
Local_ExecFlgs.Open:=FALSE;
Local_TONflgs.Topen:=FALSE:

Local_State:=14; //To 14: Close processing

(* 3.1.4. Setting the connect instruction execution flag/timer enable flag *)
ELSE

Local_ExecFlgs.Open:=TRUE;

Local_TONflgs.Topen:=TRUE;
END_IF;

(* 3.2. Enabling the connect processing time monitoring timer *)
Topen_TOMN_instance(ln:=Local_TONflgs.Topen,
PT:=MULTIME(TIME#10ms, ETN_ParameterSet_instance.TopenTime));

(* 3.3. Executing the connect instruction *)
SktTCPConnect_instance(
Execute:=Local_ExecFlgs.Open AND _EIP_EtnOnlineSta,
SrcTepPort:=ETMN_ParameterSet_instance.5rcPort,
DstTepPort:=ETN_ParameterSet_instance.DstPort.
DstAdr:=ETM_ParameterSet_instance.DstIPAddr);

50

9. Program

4. Send processing
(* 4. Send processing
-Send data from the specified TCP port. *)
12:

(* 4.1. Determining the send processing status and setting the execution flag *)

(* 4.1.1. Timeout processing *)

IF Tfs_TOMN_instance.Q) THEN
Local_ErrCode.BoolData[8):=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.5end:=FALSE;
Local_TONflgs.Tfs:=FALSE;
Local_State:=14; //To 14: Close processing

(4.1.2. Normal end processing *)

ELSIF SktTCPSend_instance.Done THEN
Local_ErrCode.BoolData[0]:=FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.5end:=FALSE;

Local_TONflgs.Tfs:=FALSE;
Local_State:=SEL(Local_ComType.Recv,14,13);
/{To 13: Receive processing/14: Close processing

(* 4.1.3. Error end processing ¥)

ELSIF SktTCPSend_instance.Error THEN
Local_ErrCode.BoolData[0]:=TRUE;
Output_SktCmdsErrorlD:=SktTCPSend_instance.ErrorlD;
Local_ExecFlgs.5end:=FALSE;
Local_TONflgs.Tfs:=FALSE;

Local_State:=14; //To 14: Close processing

(* 4.1.4. Setting the send instruction execution flag/timer enable flag *)
ELSE

Local_ExecFlgs.Send:=TRUE:

Local_TONflgs.Tfs:=TRUE;
END_IF;

(* 4.2. Enabling the send processing time monitoring timer *)
Tfs_TOMN_instance(In:=Local_TONflgs.Tfs,
PT:=MULTIME(TIME#10ms, ETN_Parameter5Set_instance. TfsTime));

(* 4.3. Executing the send instruction *)
SktTCPSend_instance(
Execute:=Local_ExecFlgs.Send AND _EIP_EtnOnline5ta,
Size:=Local_SrcDataByte,
Socket:=SktTCPConnect_instance.Socket,
SendDat:=Local_SrcData[0]);

51

9. Program

5. Receive processing
(* 5. Receive processing
-Read the data from the receive buffer of the specified TCP socket. *)
13:
(* 5.1. Determining the receive processing status and setting the execution flag *)
(* 5.1.1. Receive end processing *)
IF Tr_TOMN_instance.Q) THEN
Local_ExecFlgs.Status:=FALSE;
Local_TONflgs.Tfr=FALSE;
Local_TONflgs.Tr:=FALSE;
(* Convert the receive data from BYTE array to STRING. *)
Local_ReceiveMessage:=AryToString(Local_RecvData[0].Local_RecvDatalength):
(* Set the destination device error determination instruction execution flag *)
Local_RecvCheckFlg:=TRUE;
Local_State:=14; //To 14: Close processing

(* 5.1.2. Timeout processing *)

ELSIF Tfr_TON_instance.Q) THEN
Local_ErrCode.BoolData[9]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Recv:=FALSE;
Local_ExecFlgs.Status:=FALSE;
Local_TONflgs.Tfr.=FALSE;
Local_State:=14; //To 14: Close processing

(* 5.1.3. Normal end processing *)

ELSIF SktTCPRcv_instance.Done THEN
Local_RecvDatalength:=Local_RecvDatalength+SkiTCPRcv_instance.RevSize;
Local_RecvCHMo:=Local_RecvDatalength;

Local_ExecFlgs.Recv:=FALSE;
Local_TONflgs.Tfr.=FALSE;
Local_TONflgs.Tr:=TRUE; //To 5.1.5. Receive data read processing

(* 5.1.4. Error end processing *)

ELSIF SktTCPRcv_instance.Error THEN:
Local_ErrCode.BoolData[1]:=TRUE;
Output_SktCmdsErrorlD:=SktTCPRcv_instance.ErrorlD;
Local_ExecFlgs.Recv:=FALSE;
Local_TONflgs.Tfr=FALSE;
Local_State:=14; //To 14: Close processing

(* 5.1.5. Receive data read processing *)
ELSIF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;
(* When there is data to read: Receive processing continues. *)
IF SktGetTCPStatus_instance.DatRcvFlag THEN
Local_ExecFlgs.Recv:=TRUE;
Local_TONflgs. Tfr:-=TRUE:
Local_TONflgs.Tr:=FALSE;
END_IF;

52

(* When there is no data to read:
-When no data is received, no processing is performed,
and Read TCP socket status is re-executed at the next period.
-When data is already received,
if the maximum receive waiting time has elapsed and there is no more data,
the receive processing is ended after reading the data that was already received. *)

(* 5.1.6. Setting the TCP status get instruction execution flag/timer enable flag *)
ELSE
Local_ExecFlgs.Status:=TRUE;
Local_TONflgs.Tfr=TRUE;
(* Initialize the destination device error detection instruction execution flag *)
Local_RecvCheckFlg:=FALSE;
END_IF;

(* 5.2. Enabling the receive waiting time monitoring timer *}
Tr_TOMN_instance({In:=Local_TOMNflgs.Tr,
PT:=MULTIME(TIME#100ms, ETN_ParameterSet_instance.TrTime));

(* 5.3. Enabling the receive processing time monitoring timer®)
Tfr_TON_instance(In:=Local_TONflgs.Tfr,
PT:=MULTIME(TIME#10ms, ETN_Parameter5et_instance. TfrTime));

(* 5.4. Executing the receive instruction *)
SktTCPRcv_instance(
Execute:=Local_ExecFlgs.Recy AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket,
TimeQut:=ETN_ParameterSet_instance.TrTime,
Size:=Local_Receivesize,
RevDat:=Local_RecvData[Local_RecvCHMo]):

(* 5.5. Executing the TCP socket status read instruction *)

SktGetTCP5tatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket);

(* 5.6. Executing the destination device error detection instruction *)
ETN_ReceiveCheck_instance(
Execute:=Local_RecvCheckFlg,
Recv_Buff:=Local_Receivelessage,
Recv_Data:=0Output_RecvMess,
tLength:=Local_RecvDatalength,
ErrorlD:=Local_ErrCode. WordData,
ErrorlDEx:=0utput_MErrCode);

9. Program

53

9. Program

6. Close processing
(* 6. Close processing
-Close the specified socket *)
14:

(* 6.1. Determining the close processing status and setting the execution flag *)

(* 6.1.1. Timeout processing *)

IF Tclose_TON_instance.Q THEN
Local_ErrCode.BoolData[11]:=TRUE;
Output_SktCloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;

Local_TONflgs.Tclose:=FALSE:

Local_ExecFlgs.Status:=FALSE;
Output_EtnTcpSta:=5ktGetTCPStatus_instance. TepStatus:
Local_ErrCode.BoolData[15]:=TRUE:
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE;

Local_Status.Error=TRUE;

Local_State:=0; //To 0: Communications not in progress status

(* 6.1.2. Mormal end processing *)
ELSIF SkitClose_instance.Done THEN
Local_ExecFlgs.Status:=TRUE
IF SktGetTCPStatus_instance.Done OR SktGetTCPStatus_instance.Error THEN
Local ExecFlgs.Status:=FALSE;
IF SktGetTCPStatus_instance. TcpStatus = _CLOSED THEN
Local_ TONflgs.Tclose:=FALSE;
Output_SkitCloseErrorlD:=WORD#16#0000;
Output_EtnTepSta:=SktGetTCPStatus_instance. TepStatus;
Local_ExecFlgs.Close:=FALSE;

(* Determine the processing result of the whole communications processing *)
Local_Status.Busy:=FALSE;
(* Communications processing normal end *)

IF Local_ErrCode.WordData = WORD#16#0000 THEN
Local_Status.Done:=TRUE;
Local_ErrCode.BoolData[15]:=FALSE:

(* Communications processing error end *)

ELSE
Local_Status.Error:=TRUE;
Local_ErrCode.BoolData[15]:=TRUE;

END_IF;

Output_ErrCode:=Local_ErrCode.WordData;

Local_State:=0; //To 0: Communications not in progress status

END_IF;
END_IF;

54

(* 6.1.3. Error end processing *)

ELSIF SktClose_instance.Error THEN
Local_ErrCode.BoolData[3]:=TRUE;
Output_SktClosekrrorlD:=5ktClose_instance.ErrorlD;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE:
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;

Local_State:=0; //To 0: Communications not in progress status

(* 6.1.4. Setting the close instruction execution flag/timer enable flag *)
ELSE

Local_ExecFlgs.Close:=TRUE;

Local TONflgs.Tclose:=TRUE;
END_IF;

(* 6.2. Enable the close processing time monitering timer *)
Tclose_TON_instance(In:= Local_TONflgs.Tclose,
PT:=MULTIME(TIME#10ms.ETN_ParameterSet_instance.TcloseTime));

(* 6.3. Executing the close instruction *)

SktClose_instance(Execute:=Local_ExecFlgs.Close AND _EIP_EtnOnline5ta,

Socket:=5ktTCPConnect_instance.Socket);

(* 6.4, Executing the TCP socket status read instruction *)

SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.5tatus AND _EIP_EtnOnlineSta,
Socket:=SkiTCPConnect_instance.Socket);

7. Processing number error process
(* 7. Processing number error process

-Error process for nonexistent processing number *)

99:
Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;
Local State:=0; //To 0: Communications not in progress status

ELSE
Local 5State:=99; //To 99: Processing number error process

END_CASE:

END_IF;

9. Program

55

9.5.3.

9. Program

Detailed Description of Function Blocks

The user-defined function blocks are shown below.

The code which you need to edit according to the destination device is indicated by the red

frames on the function blocks below.

eParameterSet function block

(General-purpose Ethernet communications parameter setting)

Instruction Meaning ST expression
ETN_ParameterSet_instance(Execute,
TopenTime,
TfsTime,
General-purpose Ethernet TrTime,
ParameterSet | Communications TfrTime,
parameter setting TcloseTime,
SrcPort,
DstIPAddr,
DstPort);
[Internal variable]
None
[Input/Output]
Name /O Data type Description
Execution flag: The function block is executed when this variable
Execute Input BOOL changes to TRUE and it is stopped when this variable changes to
FALSE.
Connect processing monitoring time:
TopenTime | Output | UINT This variable sets the monitoring time of the connect processing in
increments of 10 ms.
Send processing monitoring time:
TfsTime Output | UINT This variable sets the monitoring time of the send processing in
increments of 10 ms.
Receive wait monitoring time:
TrTime Output | UINT This variable sets the waiting time for the receive data in increments of
100 ms.
Receive processing monitoring time:
TfrTime Output | UINT This variable sets the monitoring time of the receive processing in
increments of 10 ms.
Close processing monitoring time:
TcloseTime | Output | UINT This variable sets the monitoring time of the close processing in
increments of 10 ms.
SrcPort Output | UINT Local port number: This variable sets the local port number.
DstIPAddr Output [Sz'gIZ]ING Destination IP address: This variable sets the destination |IP address.
DstPort Output | UINT Destination port number: This variable sets the destination port number.
Busy Output | BOOL Busy
Done Output | BOOL Normal end
Not used
Error Output | BOOL Error end (Not used in this program.)
ErrorlD Output | WORD Error code
ErrorlDEx Output | DWORD | Expansion error code

[External variable]

None

56

9. Program

[Program]

Mame: MJ-series general-purpose Ethernet communications parameter setting function block
Applicable device: OMRON Corporation RFID system V750 series

Version: V1.00 New release November 29, 2012

(C)Copyright OMRON Corporation 2012 All Rights Reserved.

IF Execute THEN
(* Set the Ethernet-related parameters™)

SrePort:= UINT#Q: Ml acal nort Ma
DstIPAddr:= '192.168.250.2 // Destination IP address
DstPort:= UINT#/7090; /{ Destination port No.

(* Set the processing monitoring time:
Maximum time from the start to the end of the processing *)
TopenTime := UINT#500;

/{ Connect processing monitoring time setting: Setting unit 10ms<500->55>
TfsTime:= UINT#500;

/f Send processing monitoring time setting: Setting unit 10ms<500-> 55>
TfrTime:= UINT#500;

/{ Receive processing monitoring time setting: Setting unit 10ms<500->55>
TcloseTime:=UINT#500;

// Close processing monitoring time setting: Setting unit 10ms<500->5s>

(* Maximum waiting time of packet interval when a response, which is
divided into multiple packets, is received.
Also, maximum waiting time for next response
T R
TrTime:= UINT#3; /f Maximum receive waiting time: Setting unit 100ms<3->300ms>

END_IF;

RETURN:

57

eSendMessageSet function block
(General-purpose Ethernet communications send data setting)

9. Program

Instruction

Meaning

ST expression

SendMessageSet | communications

send data setting

General-purpose Ethernet | ETN_SendMessageSet_instance(Execute,

Send_Data,
ComType);

[Internal variables]

Name Data type Description
Send_Header STRING[5] Send header: Header of the send message
Send_Addr STRING[5] Destination device address: Address of the destination device
Destination device command:

Send_Command | STRING[256] Command sent to the destination device
Send_Check STRING[5] Send check code: Check code of the send message
Send_Terminate STRING[5] Send terminator: Terminator of the send message

[Input/Output]

Name /0 Data type Description

Execution flag: The function block is executed when this

Execute Input BOOL variable changes to TRUE and it is stopped when this variable

changes to FALSE.

Send_Data | Output STRING[256]

Send data: This variable sets a command that is sent to the
destination device.

ComType Output BYTE

Send/Receive type: This variable sets whether send/receive
processing are required.
1:Send only, 2: Receive only, 3: Send and receive

Busy Output BOOL Busy
Done Output BOOL Normal end
Not used
Error Output BOOL Error end (Not used in this project.)
ErrorlD Output WORD Error code

ErrorlDEx Output DWORD

Expansion error code

[Internal variable]

None

58

9. Program

[Program]

Mame: NJ-series general-purpose Ethernet communications send data setting function block
Applicable device: OMRON Corporation RFID system V750 series

Version: V1.00 New release November 29, 2012

(C)Copyright OMRON Cerperation 2012 All Rights Reserved.

IF Execute THEMN

I 2ssing required/not required setting *)
ComType:= BYTE#16#03; // 1: Send only, 2: Receive only, 3: 5end/receive

(* Set the send data *)

Send_Header="; /f Send header: None

Send_Addr=": [/ Destination device address: None
Send_Command:=CONCAT('GETR'," typ', ' fwv'); // Destination device command: GETR
Send_Check:="; /{ FCS calculation : None

Send_Terminate:= "§L"; // Send terminator: LF(0x0A): Fixed

(* Create (concatenate) the send data *)
Send_Data:=
COMNCAT(Send_Header,Send_Addr.Send_Command,5end_Check.5end_Terminate);

END_IF

RETURN;

59

eReceiveCheck function block
(General-purpose Ethernet communications receive processing)

9. Program

Instruction Meaning ST expression
ETN_ReceiveCheck_instance(Execute,
General-purpose Ethernet Recv_Data,
. . Recv_Buff,
ReceiveCheck Communications Error.
receive processing ErroriD,
ErrorlDEXx);
[Internal variables]
Name Data type Description
Receive_Check STRING[5] FCS receive value:
FCS receive result of the receive data
Calc_Check STRING[5] FCS calculation value:
FCS calculation result of the receive data
[Input/Output]
Name /O Data type Description
Execution flag: The function block is executed when this
Execute Input BOOL variable changes to TRUE and it is stopped when this
variable changes to FALSE.
tLength Input UINT Receive data length: The byte length of the receive data
Recv Data | In-out STRING[256] Recglve data storage area: An area that stores the
receive data after detection
Recv Buff | In-out STRING[256] Recglve buffer: 'An area that tgmporarlly stores the
receive data that is used for detection.
Error code: This variable stores 16#1000 for a destination
ErrorlD In-out WORD device error and 16#2000 for an FCS error.
Expansion error code:
ErrorlIDEx In-out DWORD This variable stores the FCS determination result or
destination device error code.
Busy Output BOOL Busy Not used
Done Output BOOL Normal end (Not used in this program.)
Error Output BOOL Error end: TRUE when an error occurs.

[External variable]
None

60

9. Program

[Program]

MName: NJ-series general-purpose Ethernet communications receive processing function block
Applicable device: OMRON Corporation RFID system V750 series

Version: V1.00 New release November 29, 2012

(C)Copyright OMRON Corporation 2012 All Rights Reserved.

IF Execute THEN
(* Store the receive buffer data in the receive data storage area *)

Recv_Data:= Recv_Buff;

(* Detect the destination device error
Normal: 5th to 8th characters from the start of the data is '0000" *)
IF EQascii{MID(Recv_Buff, UINT#4, UINT#5), '0000) THEN
(* No FCS detection *)
(* Normal end *)
Error:= FALSE; [/ Error flag reset
ErrorlD:= WORD#16#0000; /{ Error code clear
ErrorlDEx:= DWORD#16#00000000; // Destination device error code clear

(* Error: 5th to 8th characters from the start of the data is not "0000" *)

ELSE
Ermmor=TRUE; // Error flag set
ErrorlD:=WORD#16#1000; /{ Error code set

(* Store the destination device error code
Convert 5th to 8 characters from the left of the string ASCII code to hexadecimal *)
ErrorlDEx:= STRING_TO_DWORD (MID(Recv_Buff, UINT#4, UINT#5));

END_IF;
END_IF;

RETURN;

61

I 9.6. Timing Charts

9. Program

The timing charts of this program are shown below.

eStart & End processing

Input_Start _l

Local_Status.Busy \4

(

4

‘ Connection processing ‘

N

Send processing

\
\

‘ Receive processing ‘
N

A

Close processing

N
7

Local_Status.Busy
) A

Local_ErrCode

WordData 1640000
Output_SktCmdsErrorlID 16#0000
Output_SktCloseErrorID 16#0000

Local_ErrCode
BoolData[15]
Output_ErrCode 16#0000

Local_Status.Done

Local_Status.Error

Vt

(Normal end)

Input_Start

|
\ 4

) /)
[}
4

‘ Connection processing ‘

N

\
Send processing

\
\

‘ Receive processing ‘

N
S A
‘ Close processing ‘
N
)

.
4

1640000 X1 6tstrx

Local_ErrCode
WordData

Output_SktCmdsErrorID 16#0000 X 16#tkxkx :

Output_SktCloseErrorID 16#0000 X1 Bitkokkok |

Local_ErrCode
.BoolData[15]

Outputl ErrCode 1640000 p

Local_Status.Done

|
1
1
|
v
Local_Status.Error

(Error end)

If Input_Start changes from TRUE to FALSE during execution, a normal end or an error end is
output for one period after the processing is completed as shown below.

Input_Start _l_|

Local_Status.Busy _Ti

K

Local_Status.Done

<.
~N

Local_Status.Error

Output for one period

(Normal end)

Input_Start _|—|

Local_Status.Busy _Ti

A

Local_Status.Done

Local_Status.Error

~N

Output for one period

(Error end)

62

eConnect processing

Input_Start PToTTTTTTToToToToToToTs

-\
1
SktTCPConnect j—l—
_instance.Execute
1
1
1
1
1

Topen_TON
_instance.Q
SktTCPConnect Jf
_instance.Busy 4
1
SktTCPConnect |_|
_instance.Done A
\
SktTCPConnect \

_instance.Error

Local_ErrCode
.BoolData[2] ;

Local_ErrCode
WordData

Output_sktCmds
ErrorlD 16#0000 |

-

16#0000

SktTCPSend
_instance.Execute -------------- !

(Normal end)

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

Local_ErrCode
.BoolData[2]
Local_ErrCode
WordData

Output_SktCmds
ErrorlD

SktClose
_instance.Execute

9. Program

N

1
'
'
:

\ 4

]

--t--

]
16#0000 X,' 16#0004
!

\

16#0000 X‘ 164

(Error end)

Input_Start

SktTCPConnect

_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance

SktTCPConnect
_instance.Error

Local_ErrCode
.BoolData[10]

Local_ErrCode
WordData

Output_SktCmds
ErrorlD

SktClose
_instance.Execute

| 4
! Monitoring

! time elansed_
! n

16#0000 X 16#0400

\

\
16#0000 \ X 16#FFFF

(Timeout)

63

eSend processing

SktTCPConnect -
_instance.Done - k' Cmm e

SktTCPSend :l—l—
_instance.Execute

Tfs_TON

_instance.Q

]

]

]

]
SktTCPSend _Ti
_instance.Busy 4
SktTCPSend —|

_instance.Done

SktTCPSend \
_instance.Error 1

Local_ErrCode
.BoolData[0] !

Local_ErrCode
WordData

1640000

Output_sktCmds
ErrorlD

16#0000

SktGetTCPStatus
_instance.Execute

(Normal end)

SktTCPConnect e

1
_instance.Done - N ommmmmmmmmm o

SktTCPSend :l—l—
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

Local_ErrCode
BoolData[8]

Local_ErrCode
WordData

Output_sktCmds
ErrorlD

SktClose
_instance.Execute

’z
:Monitoring
'time elapsed
N \

|
16#0000 X 16#0100

\

\
16#0000', X 16#FFFF

(Timeout)

SktTCPConnect
_instance.Done

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy
SktTCPSend

_instance.Done

SktTCPSend
_instance.Error

Local_ErrCode
BoolData[0]

Local_ErrCode
WordData

Output_sktCmds
ErrorlD

SktClose

_instance.Execute

9. Program

r
1
S

¥
\
\
\
1
16#0000 X '16#0001
1
1
16#0000 ¥ 164"
\
<

(Error end)

64

9. Program

eReceive processing

SktTCPSend
_instance.Done --------------—---—-—~—-—--~-—--

SktTCPSend :-
_instance.Done —'\I e

SktGetTCPStatus SktGetTCPStatus ... l_l—
_instance.Execute S
] | eoe

_instance.Execute

3

7 4 /7
Receivedata ¢ SktGetTCPStatus ,/ % Y . Y
_ SkiGetTCPStatus exiss ! T|Receivedeaeiss. ctance.DatRovFl | Noreceive data
_instance.DatRcvFlag \ : “ \ -Instance.DatRevrlag ~——0S
) J 1
| L X SktTCPRcv
SktTCPRcv T f
; _l \ |_l instance.Execute :
_instance.Execute \ - . S 2 >
Tr_TON_instance.Q X Vo Tr_TON.instance.Q | Receive waiting time|_|
1 A 1 L
| Vo '| 1
SktTCPRev r VY SktTCPRev T !
instance.Busy —— ‘ ,l I _instance.Busy ‘\ y :
/ ‘Y |
SktTCPRcv SktTCPRev 1\ 1
instance.Done r| I_ _instance.Done J_' :
SktTCPRcv SktTCPRcv :
_instance.Error _instance.Error t
Local_ErrCode Local ErrCode No destination :
BoolData[1] BoolData[12] device error 4
Local_ErrCode Local_ErrCode !
1 - \
WordData 6#0000 WordData 16#0000 /‘
Output_sktCmds 1
- 16#0000 Output_sktCmds .
ErrorlD ErrorlD 16#0000 \‘
SktClose Yoo
_instance.Execute ---------------- !
(Repeat) ... » (Normal end)
SktTCPSend SktTCPSend Fo
_instance.Done ------------------------—- _instance.Done —I\I-I- ———————————————————————
SktGetTCPStatus o SktGetTCPStatus_‘I—I
_instance.Execute o _instance.Execute \
RalRa KXY J
vy yYy
. SktGetTCPStatus 7 7\ 0 e data . SktGetTCPStatus Receive data exists.
_instance.DatRcvFlag S _instance.DatRcvFlag \
Pl

SKITCPRov 1—— SktTCPRov ¥
_instance.Execute _instance.Execute —l—l—

Tr_TON_instance.Q E Receive waiting time Tr TON.instance.Q E
T
SktTCPRcv : SktTCPRcv)
_instance.Busy 'l y : _instance.Busy ——)
SktTCPRcv 1 SktTCPRcv 1
instance.Done —‘\—|| : _instance.Done :
SktTCPRev | : SktTCPRcv _|
_instance.Error A | _instance.Error

Local ErrCode Destination device Local_ErrCode]y—
BoolData[12] error occurred, BoolData[1] \
\

- A)
Local ErrCode ——feussssy 57000 Loeal ErrGode 25000 Yt 16#0002

WordData \WordData X
/
Output_sktCmd + Output_sktCmd £
- Eorip 1670000\ PSS~ 16%0000_)_16F
k \
SktClose ‘VI- ————————— SktClose ‘I- ———————————
_instance.Execute ---------------- ¢ _instance.Execute -------------- !
(Destination device error) (Error end)

65

SktTCPSend
_instance.Done

SktGetTCPStatus
_instance.Execute S
SktGetTCPStatus h Receive data exists.
_instance.DatRcvFlag

Q4
SktTCPRev |—|

_instance.Execute

Tfr_TON_instance.Q Momlormg time 1_‘

l elapsed. |‘
A [\
SktTCPRcv : 1
_instance .Busy 1 \|:.
1
SktTCPRev P!
_instance.Done —:'"" """"""
1
SktTCPRev !
_instance.Error 4/:- """""""
/Y
Local_ErrCode !

R
.BoolData[9] I
Local_ErrCode

WordData 16#0000‘ X__ 16#0200

Output_sktCmds

ErrorlD 16#0000 \ X 16#FFFF

—_—

SktClose. S,
_instance.Execute ------------

(Timeout)

9. Program

66

oClose processing

Tr_TON_instance.Q
etc

SktClose
_instance.Execute
Tclose TON !
_instance.Q
SktClose
_instance.Busy A
SktClose
_instance.Done
SktClose
_instance.Error

SktGetTCPStatus
_instance.Execute4,}‘— N
T T
SktGetTCPStatus —————-%¢-~-
____N_CLOSED

_instance.TcpSta

r
1
R e T T R

Output_skTclose
ErrorID
Local_ErrCode
BoolData[3]
Local_ErrCode
WordData

16#0000

16#0000

v

To End processing

(Normal end)

SktClose

_instance.Execute Monitoring ime s =
Tclose_TON : glimes h

) elapsed.
_instance.Q

SktClose

_instance.Busy

SktClose
_instance.Done
SktClose
_instance.Error

SktGetTCPStatus
instance.Execute4,9-— ?'
SktGetTCPStatus ———— - "¢ -Sl_________

oo ' CLOSED

Y 164FFFF
|

_instance.TcpSta
Output_SktClose
ErrorlD
Local_ErrCode
.BoolData[11]

1
Local_ErrCode 1 Gtk X 16#0800
WordData \

1
v

To End processing

16#0000

(Timeout)

Tr_TON_instance.Q

SktClose
_instance.Execute
Tclose_TON
_instance.Q
SktClose
_instance.Busy

SktClose
_instance.Done
SktClose
_instance.Error

9. Program

SktGetTCPStatus
_instance.Execute

SktGetTCPStatus

_instance.TcpSta ————

Output_Sktclose
ErrorlD
Local_ErrCode
BoolData[3]
Local_ErrCode
WordData

i i

XXXX

[}
16#0000)

1 63Kk
|
U

16800k X 1640008
v

To End processing

(Error end)

67

9. Program

I 9.7. Error Process

9.7.1. Error Code List
The error codes for this program are shown below.

eError flag (Error end/timeout) [Output_ErrCode]

If the connect processing, send processing, receive processing or close processing ends in

error or timed out, the error flag will be set in the Output_ErrCode variable.

Error flag Description

16#0000 | Normal end

16#0001 The send processing ended in error.

16#0002 | The receive processing ended in error.

16#0004 The connect processing ended in error.

16#0008 | The close processing ended in error.

16#0100 | The send processing did not end in time.

16#0200 | The receive processing did not end in time.
(Including when an arrival of the response cannot be checked.)

16#0400 | The connect processing did not end in time.

16#0800 The close processing did not end in time.

16#0010 Processing number error

16#0020 Send/Receive required/not required detection error

16#1000 Destination device error

16#2000 Destination device FCS (checksum) error

16#8000 | Error occurrence

*The error flags detected for each processing are added and the addition result is stored in
the error flag.

(Example) The connect TCP socket instruction error end + Close status check timeout

WORD#16#8000 (Error occurrence)
+WORD#16#0001 (TCP socket connect instruction ended in error)
+WORD#16#0100 (Close status check timeout)

!

Output_ErrorID: WORD#16#8101

68

9. Program

eError codes [Output_SktCmdsErrorID], [Output_SkTcloseErrorlD]
If an error occurs in the connect processing, send processing or receive processing, the

error code is stored in the Output_SktCmdsErrorID variable and then the close processing

is performed.

If an error occurs in the close processing, the error code is stored in the

Output_SkTcloseErrorID variable and the processing ends. The main error codes are

shown below.

Error code Description
16#0000 Normal end
16#0400 An input parameter for an instruction exceeded the valid range for an input variable.
16#0407 The results of instruction processing exceeded the data area range of the output parameter.
16#2000 An instruction was executed when there was a setting error in the local IP address.
1642002 Address resolution failed for a destination node with the domain name that was specified in
the instruction.
The status was not suitable for execution of the instruction.
+SktTCPConnect Instruction
The TCP port that is specified with the SrcTcpPort input variable is already connected.
The destination node that is specified with DstAdr input variable does not exist.
The destination node that is specified with DstAdr and DstTcpPort input variables are not
waiting for a connection.
16#2003 | .skTCPRev Instruction
The specified socket is receiving data.
The specified socket is not connected.
+SktTCPSend Instruction
The specified socket is sending data.
The specified socket is not connected.
16#2006 A timeout occurred for a socket service instruction.
16#2007 The handle that is specified for the socket service instruction is not correct.
1642008 The maximum resources that you can use for socket service instructions at the same time
was exceeded.
16#FFFF Processing ends without completing the executing of an instruction.

@ Additional Information

For details, refer to A-1 Error Code Details and A-2 Error Code Descriptions under
Appendices in the NJ-series Instructions Reference Manual (Cat. No. W502).

=\

Additional Information

For details on socket service errors and troubleshooting, refer to 9-7 Precautions in Using
Socket Services of Chapter 9 Socket Service in the NJ-series CPU Unit Built-in EtherNet/IP
Port User's Manual (Cat. No. W506).

69

9. Program

o TCP connection status error [Output_EtnTcpSta]
If the TCP connection status does not enter the normal status (_ CLOSED) in time after the
close processing, a TCP connection status code is set in the Output_EtnTcpSta variable. (If
the close processing ends in error, check this also.)

Error code enumerator
_eCONNECTION_STATE

Description

_CLOSED

Connection closed. (Normal status)

LISTEN Waiting for connection
_SYN SENT SYN sent in active status.
_SYN RECEIVED SYN sent and received.
_ESTABLISHED Already established.
_CLOSE WAIT FIN received and waiting for completion.
_F|N WAIT1 Completed and FIN sent.
_CLOSING Completed and exchanged FIN. Awaiting ACK.
_LAST ACK FIN received and completed. Awaiting ACK.
_F|N WAIT2 Completed and ACK received. Awaiting FIN.
:TIME WAIT After closing, pauses twice the maximum segment life (2MSL).

70

eDestination device error code
The destination device error code is stored in the Output_ MErrCode variable.

When 16#2000 is stored in Output_ErrCode, the FCS value of the data received from the

9. Program

destination device is stored in Output_ MErrCode.

When 16#1000 is stored in Output_ErrCode, the error number is stored in
Output_MErrCode as the destination device error code.

Bit 31 24 23 16 15 8 7
16#0000 Response code
16#**:Main | 16#**:Sub
Response Code
Category Response Mame Descrpbon
Main Sub +
Mormalend [00 D0 |Momal end The racaived command ended normally with no emor.
- N e A parity eqTor has occurred In one of the characters of the command
frame [For only RS-232C).
" pp | Framing emor A framing emor has occurmed In one of the characters of the command
frame {For only RS-232C).
12 gy | @¥Emun emo AN gvemun emor has occumed In one of the characters of the command
frame {For only RS-232C).
13 oo FCS ermor The command frame has an Incommect FCS (For only RE-232C)
bE | Command cade Incarrect command hag besn recelved. The response code 15 ICMD.
See Boll | BT
1X |Command
Command 14 Command parameter |5 Incomect.
sor Ses k1] | pAFAMEtEr ST
ZH | Command 0PN | oo mang ogtion bs Incomeet.
See Boll | BT
Process emor Specified command can niot be executed.
- Ex. Caused by executing a communication command when the last
command Is being executed.
15 Ex. Caused by Incamect seing of Aikenng condion.
0% |FiRer amor Spectled fier setins |5 Incomect
Sien Bk 1] Ex. Caused by Incomect setting of fikering condiion.
18 pp | Frme lengtn emor | A command recalved from e host excesds Me recaive bufier (512
Eytes).
00 |LST busy emor Channal none by can LET use. {The electric wave cannat b2 sent. |
Communication During the transaction after tag detecton, communization emor of
1% |emor procass ime out has occumed, and consequently the transaction can
Sien Bk 1] niot be completed normally.
70 Specified password does not match io the one aof the target tag.
Communication During the transaction after tag detection, communileation emor of
x| procass ime aut has oooumed, and consequently the transaction can
o niot be completed normalty
1Ses 1
. In the case of 1D write/Diata wiite, 3 part of data In the tag may have
besn writtarn.
1 pp |verMeationerror | The raader has nat wiitten he data o te tag by raason of venncation
emar.
RF Tag - op |Adaress Specilying BankiAddress In the tag memory Is Incomest and command
E':"T' MR specification emor | can not be executed.
on emor
- pp |Damwite ermor During the data write Into the detecied tag, sufficlent power Is not
! supmlled io the tag.
1% |Amtenna derection | At the FUW starts o, an approprate antenna has not been connectad to
o |[eren emor the specfiad antenna part
¥ | Antenna emmor Emor occumed with the antenna connected io the specified antenna port
Sea Pictu 1] {&van though the antenna s deecied nommally when s1an up)
Lock amar When data wiite or read command Is sant for the locked anea. It
. oo depends on the tag's chlp specfications. (For Monza chip, when these
= commands are sent for Lock Sit of User Memaory because this area doss
NIt et JiSe howd
7F 0X |Tag emor Thie tag has besn rejacted the command process.
(Sa Pioks 11
S - An efror that blocks command execition Nas been detectad In the
;:f:-r :C Systememor | hardware (swch 35 malfunction of inner circult or temporary exacution
emor causad by nolse).

Note1: 'x' character in

response code means one character in the listof 0 to 9 orAto F.

71

9. Program

Note2: Depends on the specification of IC chip equipped in the RF tag. (It occurs at Monza chip when it
specified the lock bit which does not exist in its memory map.

’g Additional Information

For details and troubleshooting the destination device errors, refer to Section 7

Troubleshooting Alarms and Errors in the V750-series UHF RFID System User's Manual
(Cat. No. Z235).

72

9. Program

9.7.2. TCP Connection Status Error and Corrective Actions
This section describes the situation in which the TCP connection status error occurs and
explains the corrective actions.

e Affects of the TCP connection status error

After a TCP connection status error occurs, if this program is executed again without any
corrective action or without notifying the error, then the destination node specified with the
destination IP address (DstAdr) input variable and destination port (DstTcpPort) input
variable may not be waiting for a connection. (Hereinafter this error is referred to as a
connect processing error.) This may be affected by the TCP connection status error that
occurred when the previous communication processing ended. (For error details, refer to
9.7.1 Error Code List.)

eSituation in which the TCP connection status error occurs
Both a TCP connection status error after the close processing and a connect processing
error that occurs when the next communications processing is performed can be caused
by the fact that the close processing is not completed at the destination device. In this
situation, although all processing (until the close processing) of the program ended in the
Controller, the close processing completion notification is not received from the destination
device (It is not confirmed that the close processing is completed at the destination device).

eCorrective actions
The close processing may not be completed at the destination device. Check if the
communications port of the destination device is closed. If not closed or not possible to
check, reset the communications port of the destination device. The communications port
of the destination device can be reset by executing restart operation from the software or
by cycling the power supply. For details, refer to the manual for each destination device.

IE' Precautions for Correct Use

Make sure the destination device is disconnected from other device before resetting the
communications port of the destination device.

e State of the Controller at a TCP connection status error
When a TCP connection status error occurs, the processing of this program is completed.
However, the resend/time monitoring function of TCP/IP , which is described in 9.3.2. Time
Monitoring Function, may be operating. This resend processing will stop in the following
cases. Therefore, you do not have to stop it.
*When a connect processing request is made again by re-executing the program
*When a communications problem such as cable disconnection is cleared during resend
processing
*When the resend processing is completed with the TCP/IP time monitoring (timeout)
function

*When the Controller is restarted or the power supply is turned OFF
73

10. Revision History

10. Revision History

Revision Date of revision Revision reason and revision page
code
01 2013/04/15 First edition

74

OMRON Corporation Industrial Automation Company
Tokyo, JAPAN
Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69-2132 JD Hoofddorp One Commerce Drive Schaumburg,

The Netherlands IL 60173-5302 U.S.A.

Tel: (31)2356-81-300/Fax: (31)2356-81-388 Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD.

No. 438A Alexandra Road # 05-05/08 (Lobby 2), Room 2211, Bank of China Tower,

Alexandra Technopark, 200 Yin Cheng Zhong Road,

Singapore 119967 PuDong New Area, Shanghai, 200120, China

Tel: (65) 6835-3011/Fax: (65) 6835-2711 Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2013 All Rights Reserved.

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. P543-E1-01

0911(-)

	1. Related Manuals
	2. Terms and Definition
	3. Remarks
	4. Overview
	5. Applicable Devices and Support Software
	5.1. Applicable Devices
	5.2. Device Configuration

	6. Ethernet Communications Settings
	6.1. Ethernet Communications Settings
	6.1.1. Communications Settings between the Personal Computer and the RFID Reader/Writer
	6.1.2. Communications Settings between the Controller and the RFID Reader/Writer

	6.2. Example of Checking Connection

	7. Connection Procedure
	7.1. Work Flow
	7.2. Setting Up the RFID Reader/Writer
	7.2.1. Parameter Setting

	7.3. Setting Up the Controller
	7.3.1. Starting the Sysmac Studio and Importing the Project File
	7.3.2. Checking the Parameters and Building
	7.3.3. Going Online and Transferring the Project Data

	7.4. Connection Status Check
	7.4.1. Executing the Program and Checking the Receive Data

	8. Initialization Method
	8.1. Controller
	8.2. RFID Reader/Writer

	9. Program
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications with Socket Service Instructions

	9.2. Destination Device Command
	9.2.1. Overview of the Command
	9.2.2. Detailed Description of the Command
	9.2.3. Command Settings

	9.3. Error Detection Processing
	9.3.1. Error Detection in the Program
	9.3.2. Time Monitoring Function

	9.4. Variables
	9.4.1. List of Variables

	9.5. ST Program
	9.5.1. Functional Components of the Program
	9.5.2. Program List
	9.5.3. Detailed Description of Function Blocks

	9.6. Timing Charts
	9.7. Error Process
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Error and Corrective Actions

	10. Revision History

