

Machine Automation Control ler NJ-series

General-purpose Ethernet
Connection Guide
(TCP/IP)
OMRON Corporation

V750 series RFID System

 P543-E1-01

About Intellectual Property Right and Trademarks

 Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation

GmbH, Germany.
Ethernet is a registered trademark of Xerox Corporation.

Java and all Java-related trademarks and logos are trademarks or registered trademarks of

Oracle Corporation, Inc., in the USA and other countries.

Company names and product names in this document are the trademarks or registered

trademarks of their respective companies.

Table of Contents

1. Related Manuals .. 1

2. Terms and Definition ... 2

3. Remarks ... 3

4. Overview .. 5

5. Applicable Devices and Support Software.. 6

5.1. Applicable Devices... 6

5.2. Device Configuration.. 7

6. Ethernet Communications Settings... 9

6.1. Ethernet Communications Settings.. 9

6.2. Example of Checking Connection .. 10

7. Connection Procedure ...11

7.1. Work Flow ...11

7.2. Setting Up the RFID Reader/Writer.. 12

7.3. Setting Up the Controller.. 18

7.4. Connection Status Check... 25

8. Initialization Method.. 28

8.1. Controller ... 28

8.2. RFID Reader/Writer ... 29

9. Program.. 30

9.1. Overview .. 30

9.2. Destination Device Command.. 34

9.3. Error Detection Processing .. 37

9.4. Variables .. 40

9.5. ST Program.. 45

9.6. Timing Charts... 62

9.7. Error Process ... 68

10. Revision History.. 74

1. Related Manuals

 1

1. Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all

Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for

each device which is used in the system.

Cat. No. Model Manual name

W500 NJ501-[][][][]

NJ301-[][][][]

NJ-series CPU Unit Hardware User's Manual

W501 NJ501-[][][][]

NJ301-[][][][]

NJ-series CPU Unit Software User's Manual

W506 NJ501-[][][][]

NJ301-[][][][]

NJ-series CPU Unit Built-in EtherNet/IP Port User's Manual

W504 SYSMAC-SE2[][][] Sysmac Studio Version 1 Operation Manual

W502 NJ501-[][][][]

NJ301-[][][][]

NJ-series Instructions Reference Manual

Z235 V750-BA50C04-US
V740-HS01[][]

V750-series UHF RFID System User’s Manual

2. Terms and Definition

 2

2. Terms and Definition

Terms Explanation and Definition

IP address Ethernet uses an IP address to perform communications.

The IP address (Internet Protocol address) is an address that is used to

identify a node (host computer or controller, etc.) on Ethernet.

IP addresses must be set and managed so they do not overlap.

Socket A socket is an interface that allows you to directly use TCP or UDP

functions from the user program. The socket services enable data

exchange with destination nodes. The NJ-series Machine Automation

Controller performs socket communications by using the standard socket

service instructions.

Connect processing/

Accept processing

Open processing is executed on each node to connect the TCP socket.

The open method depends on whether the node is opened as a server or

client.

In this document, the processing executed to open a node as a client is

called "connect processing" and the processing executed to open as a

server is called "accept processing".

Keep-alive function When the keep-alive function is used with TCP/IP socket services, the

keep-alive communications frame is used to check the status of the

connection with the destination node (either a server or client) if there are

no communications during the specified time interval.

Checks are executed at a certain interval, and if there is no response to

any of them then the connection is terminated.

Linger function This is an option for the TCP socket that enables immediate connect

processing using the same port number without waiting until the port

number opens after RST data is sent when the TCP socket closes.

If the linger option is not specified, FIN data will be sent when a TCP

socket is closed, and then approximately 1 minute will be required to

confirm the transmission and perform other closing management with the

destination node. Therefore, it may not be possible to immediately use

TCP sockets with the same port number.

3. Remarks

 3

3. Remarks

(1) Understand the specifications of devices which are used in the system. Allow some

margin for ratings and performance. Provide safety measures, such as installing safety

circuit in order to ensure safety and minimize risks of abnormal occurrence.

(2) To ensure system safety, always read and heed the information provided in all Safety

Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for

each device used in the system.

(3) The users are encouraged to confirm the standards and regulations that the system must

conform to.

(4) It is prohibited to copy, to reproduce, and to distribute a part of or whole part of this

document without the permission of OMRON Corporation.

(5) This document provides the latest information as of April 2013. The information on this

manual is subject to change for improvement without notice.

3. Remarks

The following notation is used in this document.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure using the product safely.

Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and

performance.

Additional Information

Provides useful information.

Additional information to increase understanding or make operation easier.

 4

4. Overview

4. Overview

This document describes the procedure for connecting the RFID Reader/Writer (V750 series)

of OMRON Corporation (hereinafter referred to as OMRON) to the NJ-series Machine

Automation Controller (hereinafter referred to as Controller) through Ethernet, and provides

the procedure for checking their connection.

Refer to the Ethernet communications settings of the prepared project file to understand the

setting procedure and key points to connect the devices via Ethernet.

The user program in this project file is used to check the Ethernet connection by

sending/receiving the message of “GETR TYP FWV (read the product type and firmware

version of the memory data)” to/from the destination device.

Prepare the latest Sysmac Studio project file beforehand. For information on how to obtain the

file, contact your OMRON representative.

Name File name Version

Sysmac Studio project file

(extension: smc)

OMRON_V750_ETN(TCP)_EV101.smc Ver.1.01

*Hereinafter, the Sysmac Studio project file is referred to as the “project file”.

The user program in the project file is referred to as the “program”.

This document aims to explain the wiring method and communications settings

necessary to connect the corresponding devices and provide the setting

procedure. The program used in this document is designed to check if the

connection was properly established, and is not designed to be constantly used

at a site. Therefore, functionality and performances are not sufficiently taken into

consideration. When you construct an actual system, please use the wiring

method, communications settings and setting procedure described in this

document as a reference and design a new program according to your

application needs.

 5

5. Applicable Devices and Support Software

5. Applicable Devices and Support Software

5.1. Applicable Devices

The applicable devices are given below.

Manufacturer Name Model

OMRON NJ-series CPU Unit NJ501-[][][][]

NJ301-[][][][]

OMRON RFID Reader/Writer

(complies with FCC and EN)

V750-BA50C04-US

OMRON Antenna V740-HS01[][]

OMRON Antenna cable V740-A01 [][]M

Additional Information
As applicable devices above, the devices with the models and versions listed in Section 5.2.

are actually used in this document to describe the procedure for connecting devices and

checking the connection.

You cannot use devices with versions lower than the versions listed in Section 5.2.

To use the above devices with versions not listed in Section 5.2 or versions higher than those

listed in Section 5.2, check the differences in the specifications by referring to the manuals

before operating the devices.

Additional Information
This document describes the procedure to establish the network connection. Except for the

connection procedure, it does not provide information on operation, installation or wiring

method. It also does not describe the function or operation of the devices. Refer to the

manuals or contact your OMRON representative.

 6

5. Applicable Devices and Support Software

5.2. Device Configuration

The hardware components to reproduce the connection procedure of this document are as

follows:

 7

Manufacturer Name Model Version
OMRON NJ-series CPU Unit

(Built-in EtherNet/IP port)
NJ501-1500 Ver.1.03

OMRON Power Supply Unit NJ-PA3001
OMRON Switching Hub W4S1-05C Ver.1.0
OMRON Sysmac Studio SYSMAC-SE2[][][] Ver.1.04
OMRON Sysmac Studio project file OMRON_V750_ETN(TCP)

_EV101.smc
Ver.1.01

- Personal computer
(OS:Windows7)

-

- USB cable
(USB 2.0 type B connector)

-

- LAN cable -
OMRON RFID Reader/Writer V750-BA50C04-US Ver.102-10

2-103-0
OMRON Antenna (Circular) (4 max.) V740-HS01CA
OMRON Antenna cable V740-A01[][]M
OMRON AC Adapter (included) -

Precautions for Correct Use

Prepare the latest project file in advance.

To obtain the file, contact your OMRON representative.

Precautions for Correct Use

Update the Sysmac Studio to the version specified in this section or higher version using the

auto update function. If a version not specified in this section is used, the procedures

described in Section 7 and subsequent sections may not be applicable. In that case, use the

equivalent procedures described in the Sysmac Studio Version 1 Operation Manual (Cat.No.

W504).

NJ501-1500
(Built-in EtherNet/IP port)

Switching hub
W4S1-05C

Personal computer
(Sysmac Studio installed,
OS: Windows 7)

USB cable

LAN cable

Antenna
(V740-HS01CA)

RFID Reader/Writer
(V750-BA50C04-US)

AC Adapter
(included)

Antenna Cable
(V740-A01 [][]M)

5. Applicable Devices and Support Software

Additional Information
It may not be possible to reproduce the same operation with different devices or versions.

Check the configuration, model and version. If they are different from your configuration.

Contact your OMRON representative.

Additional Information
In this document, a USB is used to connect with the Controller. For information on how to

install a USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection of the

Sysmac Studio Version 1 Operation Manual (Cat.No. W504).

 8

6. Ethernet Communications Settings

6. Ethernet Communications Settings

This section describes the specifications such as communication parameters and variables

that are set in this document.

Additional Information
To perform communications without using the settings described in this section, you need to

modify the program. For information on the program, refer to Section 9. Program.

6.1. Ethernet Communications Settings

The settings required for Ethernet communications are shown below.

6.1.1. Communications Settings between the Personal Computer and the RFID
Reader/Writer

The setting example below is used to explain the procedure for setting the RFID

Reader/Writer by using the personal computer.

Setting item Personal computer used for setting RFID Reader/Writer

IP address 192.168.1.1 192.168.1.200 (Default)

Subnet mask 255.255.255.0 255.255.255.0 (Default)

Gateway ---.---.---.--- 192.168.1.254 (Default)

*In this document, the gateway setting is unnecessary because the connection is made in

the same segment.

6.1.2. Communications Settings between the Controller and the RFID
Reader/Writer

The setting example below is used to explain the procedure for connecting the Controller to

the RFID Reader/Writer.

Setting item NJ501-1500 RFID Reader/Writer

IP address 192.168.250.1 192.168.250.2

Subnet mask 255.255.255.0 255.255.255.0 (Default)

Gateway -.-.-.- 192.168.1.254 (Default)

Host name - “V750-BA50C04-US” (Default)

Domain name - Blank (Default)

DHCP - OFF (Default)

TCP/IP port (This is set by the program.) 7090 (Default)

*In this document, the gateway setting is unnecessary because the connection is made in

the same segment.

*This project file uses the default settings (keep-alive: use, linger option: Do not use) of the

keep-alive and linger option functions for the TCP socket communications. Use these

functions according to the system when necessary.

 9

6. Ethernet Communications Settings

6.2. Example of Checking Connection

This document shows an example of a Structured Text (ST) program in which the Controller

executes the connect processing, send/receive processing, and close processing on the RFID

Reader/Writer.

The Controller and RFID Reader/Writer send and receive the message of “GETR TYP FWV

(read the product type and firmware version of the memory data)”. The following figure

outlines the operation.

 Controller Ethernet RFID Reader/Writer

Project file

Local_

SrcData

Variable

Local_

RecvData

Send data
setting area

Receive data
setting area

Socket
communications

function

Receive data

Connect processing

Close processing

Send data

ST Program

IF …. THEN
 ……….
ELSE
 ……….

Sending/Receiving Ethernet
command
Reading the product type and
firmware version

Specifying Ethernet
communications
Reading the type and firmware
version

 10

7. Connection Procedure

7. Connection Procedure

This section describes the procedure for connecting the RFID Reader/Writer to the Controller

via Ethernet.

This document explains the procedures for setting the Controller and RFID Reader/Writer

from the factory default setting. For the initialization, refer to Section 8 Initialization Method.

7.1. Work Flow

Take the following steps to connect the RFID Reader/Writer to the Controller via Ethernet.

7.2 Setting Up the RFID Reader/Writer Set up the RFID Reader/Writer.

↓

 7.2.1 Parameter Setting Set the parameters of the RFID Reader/Writer.

↓

7.3 Setting Up the Controller Set up the Controller.

↓
 7.3.1 Starting the Sysmac Studio and

Importing the Project File

Start the Sysmac Studio, and import the project file.

↓
 7.3.2 Checking the Parameters and

Building

Check the set parameters, execute the program
check on the project data and build the Controller.

↓
 7.3.3 Connecting Online and

Transferring the Project Data

Connect online with the Sysmac Studio and transfer
the project data to the Controller.

↓

7.4 Connection Status Check Execute the program and confirm that Ethernet
communications are normally performed.

↓
 7.4.1 Executing the Program and

Checking the Receive Data

Execute the program and confirm that the correct

data are written to the variables of the Controller.

Precautions for Correct Use

Prepare the latest project file in advance.

To obtain the file, contact your OMRON representative.

 11

7. Connection Procedure

7.2. Setting Up the RFID Reader/Writer

Set up the RFID Reader/Writer.

7.2.1. Parameter Setting
Set the parameters of the RFID Reader/Writer.

For the setting, a web browser (e.g., Internet Explore) that can execute Java software is

required. Install necessary software so that Java software can operate.

Set the IP address of the personal computer to 192.168.1.1.

Precautions for Correct Use

Set the parameters of the RFID Reader/Writer by using the Ethernet communications of the

personal computer.

Note that you may need to change the settings of the personal computer depending on the

status of the personal computer.

1 Connect the antenna to the
antenna port on the side of the
RFID Reader/Writer.

(Side of RFID Reader/Writer)

2 Connect the Switching Hub to
the Ethernet port on the other
side of the RFID Reader/Writer
to using the LAN cable.
Connect the included AC
Adapter cable to the DC power
input.

(Other side of RFID Reader/Writer)

 12

7. Connection Procedure

3 Start Internet Explorer from the
personal computer that is
connected to the Switching Hub.

*Set the IP address of the
personal computer to
192.168.1.1. Use the following
procedure to check the IP
address of the personal
computer.

(1)Click Connect to the

Internet View network status
and tasks - Change adapter
settings on the Control Panel.

(2)Double-click Local Area
Connection on the Network
Connections.

(3)Click the Details Button on
the Local Area Connection
Status Dialog Box.

(4)Confirm that the IP address is
192.168.1.1.

4 Click Tool () on the command
bar of Internet Explorer and
select Internet options.

 13

7. Connection Procedure

5 The Internet Options Dialog Box
is displayed. Select the
Connections Tab.

6 The Internet Options Dialog Box
is displayed. Click the LAN
settings Button.

 14

7. Connection Procedure

7 The Local Area Network (LAN)
Settings Dialog Box is
displayed.
Confirm that the Use a proxy
server for your LAN Check Box
is cleared from the Proxy server
Field, and click the OK Button.

8 Click the OK Button on the
Internet Options Dialog Box.

 15

7. Connection Procedure

9 Type http://192.168.1.200

/ in the address bar () of

Internet Explorer.

The Reader Status Window is
displayed. Click the Reader
Settings Button.

The V750 Operation Warning
Dialog Box is displayed. Click
the OK Button.

10 The Reader Settings Window
shows the Ethernet settings.
Make the settings as follows and
click the Save Button.

Host Name

:V750-BA50C04-US
Domain Name

:Blank
DHCP: OFF
IP Address

:192.168.250.2
Subnet Mask

:255.255.255.0
Gateway

:192.168.1.254
TCP/IP Port

:7090

*If the settings are different from
the above, change the
corresponding set values.

Exit Internet Explorer.

*If Internet Explorer does not
exit, the IP address of the RFID
Reader/Writer will be changed
and the screen will not be
displayed.

*The gateway setting is unnecessary. However, if you

leave the Gateway Field blank, an error will occur.

Therefore, use the default setting.

 16

7. Connection Procedure

11 Cycle the power supply to the
RFID Reader/Writer.

*The new parameters will be
enabled after the power supply
is cycled.

Additional Information
In addition to changing the Ethernet settings on the web browser screen, you can set and

read the Ethernet parameters by using the setting commands (SETR and GETR). For

information on the specifications of the setting commands, refer to Section 5 Command Line

Interface in the V750-series UHF RFID System User’s Manual (Cat. No. Z235).

 17

7. Connection Procedure

7.3. Setting Up the Controller

Set up the Controller.

7.3.1. Starting the Sysmac Studio and Importing the Project File
Start the Sysmac Studio and import the project file.

Install the Sysmac Studio and USB driver beforehand.

1 Confirm that the personal

computer is connected to the

Controller through a USB cable,

and turn ON the power supply to

the Controller.

Start the Sysmac Studio and

click the Import Button.

*If a confirmation dialog for an

access right is displayed at

start, select to start.

2 The Import File Dialog Box is

displayed. Select

OMRON_V750_ETN(TCP)_EV

101.smc and click the Open

Button.

*Obtain the project file from

OMRON.

3 OMRON_V750_ETN(TCP)_EV

101 project is displayed.

The left pane is called Multiview

Explorer, the right pane is called

Toolbox and the middle pane is

called Edit Pane.

*If an error dialog box is

displayed, check the version of

the Sysmac Studio.

Multiview
Explorer

Edit Pane Edit Pane Toolbox

 18

7. Connection Procedure

7.3.2. Checking the Parameters and Building
Check the set parameters, execute the program check on the project data and build the

Controller.

1 Double-click Built-in

EtherNet/IP Port Settings

under Configurations and

Setup - Controller Setup in the

Multiview Explorer.

2 The Built-in EtherNet/IP Port

Settings Tab Page is displayed

in the Edit Pane.

Click the TCP/IP Settings

Button, select the Fixed setting

Option in the IP Address Field,

and confirm that the following

settings are made.

•IP address: 192.168.250.1

•Subnet mask: 255.255.255.0

•Default gateway:

.._._ (blank)

3 Double-click the Task Settings

under Configurations and

Setup in the Multiview Explorer.

4 The Task Settings Tab Page is

displayed in the Edit Pane.

Click the Program Assignment

Settings Button and confirm

that Program0 is set under

PrimaryTask.

5 Select Check All Programs

from the Project Menu.

 19

7. Connection Procedure

 20

6 The Build Tab Page is displayed

in the Edit Pane.

Confirm that “0 Errors” and “0

Warnings” are displayed.

7 Select Rebuild Controller from

the Project Menu.

A screen is displayed indicating

the conversion is being

performed.

8 Confirm that “0 Errors” and “0

Warnings” are displayed in the

Build Tab Page.

7. Connection Procedure

7.3.3. Going Online and Transferring the Project Data
Connect online with the Sysmac Studio and transfer the project data to the Controller.

Always confirm safety at the destination node before you transfer a user

program, configuration data, setup data, device variables, or values in memory

used for CJ-series Units from the Sysmac Studio.

The devices or machines may perform unexpected operation regardless of the

operating mode of the CPU Unit.

1 Select Change Device from the

Controller Menu.

2 The Change Device Dialog Box

is displayed.

Confirm that the Device and

Version are set as shown on the

right and click the OK Button.

*If the settings are different from

the above, change the values

from the pull-down list.

3 If settings were changed in step

2, the Build Dialog Box is

displayed. Click the Yes Button.

*This dialog box is not displayed

if no change was made.

4 Select Communications Setup

from the Controller Menu.

 21

7. Connection Procedure

5 The Communications Setup

Dialog Box is displayed.

Select the Direct Connection via

USB Option from Connection

Type.

Click the OK Button.

6 Select Online from the

Controller Menu.

*If the dialog on the right is
displayed, the model or version
of the Controller does not
match those of the project file.
Check the settings of the
project file, return to step 1 and
try again.
Click the OK Button to close
the dialog box.

 22

7. Connection Procedure

7 A confirmation dialog is

displayed. Click the Yes Button.

*The displayed dialog differs

depending on the status of the

Controller used. Click the Yes

Button to proceed with the

processing.

*The displayed serial ID differs

depending on the device.

Additional Information
For details on the online connections to a Controller, refer to Section 5 Going Online with a
Controller in the Sysmac Studio Version 1.0 Operation Manual (Cat. No. W504).

8 When an online connection is

established, a yellow bar is

displayed on the top of the Edit

Pane.

9 Select Synchronization from

the Controller Menu.

 23

7. Connection Procedure

10 The Synchronization Dialog Box

is displayed.

Confirm that the data to transfer

(NJ501 in the right figure) is

selected. Then, click the

Transfer to Controller Button.

*After executing the Transfer to

Controller, the Sysmac Studio

project data is transferred to the

Controller and the data are

compared.

11 A confirmation dialog is

displayed. Click the Yes Button.

A screen stating "Synchronizing"

is displayed.

A confirmation dialog box is

displayed. Click the Yes Button.

12 Confirm that the synchronized

data is displayed with the color

specified by “Synchronized” and

that a message is displayed

stating "The synchronization

process successfully finished".

If there is no problem, click the

Close Button.

*A message stating "The

synchronization process

successfully finished" means

that the project data of Sysmac

Studio and that of the Controller

match.

*If the synchronization fails,

check the wiring and repeat the

procedure described in this

section.

 24

7. Connection Procedure

7.4. Connection Status Check

Execute the program and confirm that Ethernet communications are normally performed.

Sufficiently confirm safety before you change the values of variables on a Watch

Tab Page when the Sysmac Studio is online with the CPU Unit. Incorrect

operation may cause the devices that are connected to Output Units to operate

regardless of the operating mode of the Controller.

Precautions for Correct Use

Please confirm that the LAN cable is connected before proceeding to the following steps.

If it is not connected, turn OFF the power to the devices, and then connect the LAN cable.

7.4.1. Executing the Program and Checking the Receive Data
Execute the program and confirm that the correct data are written to the variables of the

Controller.

 25

1 Confirm that RUN mode is

displayed on the Controller

Status Pane of the Sysmac

Studio.

If PROGRAM mode is shown,

select Mode - RUN Mode from

the Controller Menu.

A confirmation dialog box is

displayed. Click the Yes Button.

2 Select Watch Tab Page from the

View Menu.

3 The Watch Tab Page 1 is

7. Connection Procedure

displayed in the lower section of

the Edit Pane.

4 Confirm that the variables shown
on the right are displayed in the
Name Columns.

*To add a variable, click Input
Name…

*Program0 of the Name is
omitted from the following
descriptions.

Program execution status Receive data Send data

5 Click TRUE on the Modify

Column of Input_Start.

The Online value of Input_Start

changes to True.

The program will be operated

and Ethernet communications

will be performed with the

destination device.

Start input

Error codes

TCP

connection

status

 26

7. Connection Procedure

6 When the communications ends

normally, each error code

changes to 0.

The TCP connection status

(Output_EtnTcpSta) changes to

_CLOSED.

*In the case of error end, the

error code corresponding to the

error is stored. For details on

error codes, refer to 9.7 Error

Process.

The Online value of

Local_Status.Done, which

indicates the execution status of

the program, changes to True. In

the case of error end,

Local_Status.Error changes to

True.

*When Input_Start changes to

FALSE, each Local_Status

variable also changes to False.

For details, refer to 9.6 Timing

Charts.

7 The response data received from

the destination device is stored

in Output_RecvMess.

(ETN_SendMessageSet_instanc

e.Send_Data is a send

command.)

In the Watch Tab Page 1, specify

an area to reference as shown in

the right figure.

*The response data differ

depending on the device used

*Refer to 9.2. Destination Device

Command for details on the

command.

Receive data

•Send command: “GETR”

•Response code: “0000” (normal)

•Model: ”typ=$”V750-BA50C04-US$””

•Firmware version: “fwv=102-102-103-0”

•Terminator: “$L”([LF])

 27

8. Initialization Method

8. Initialization Method

This document explains the setting procedure from the factory default setting.

If the device settings are changed from the factory default setting, some settings may not be

applicable as described in this procedure.

8.1. Controller

To initialize the settings of the Controller, select Clear All Memory from the Controller Menu of

the Sysmac Studio.

 28

8. Initialization Method

8.2. RFID Reader/Writer

Use the following procedure to initialize the settings of the RFID Reader/Writer.

1 Press the mode switch at least
one second and start the Safe
Mode of the RFID
Reader/Writer.

(Side of the RFID Reader/Writer)

2 Type “http://192.168.1.200/" in
the address bar () of the
Internet Explorer.

The Safe Mode Window is
displayed. Click the Init All
Settings Button.
The RFID Reader/Writer will be
initialized and restarted.

*The firmware version in the
safe mode is 010-000-000-0.

Additional Information
For the initialization of the RFID Reader/Writer, refer to Mode switch in Names and Functions

of Components in Reader of Section 2 Specifications and Performance and Mode in Section

3 Mode and Function in the V750-series UHF RFID System User's Manual (Cat. No. Z235).

 29

9. Program

9. Program

This section describes the details on the program in the project file used in this document.

9.1. Overview

This section explains the specifications and functions of the program used to check the

connection between the RFID Reader/Writer (V750 series) (hereinafter referred to as

destination device) and the Controller (built-in EtherNet/IP port) (hereinafter referred to as

Controller).

This program uses the socket service functions of the Controller to execute “GETR TYP FWV

command (read the product type and firmware version of the memory data)” on the

destination device and to detect a normal end or an error end.

The normal end of this program means a normal end of the TCP socket communications.

The error end means an error end of the TCP socket communications and an error end of the

destination device (detected with the response data from the destination device).

Additional Information
OMRON has confirmed that normal communications can be performed using this program

under the OMRON evaluation conditions including the test system configuration, version of

each product, and product Lot, No. of each device which was used for evaluation.

OMRON does not guarantee the normal operation under the disturbance such as electrical

noise and the performance variation of the device.

Additional Information
With Sysmac Studio, add the prefix “10#" (possible to omit) to decimal data and the prefix

"16#" to hexadecimal data when it is necessary to distinguish between decimal and

hexadecimal data. (e.g., “1000” or “10#1000” for decimal data and “16#03E8” for

hexadecimal data, etc.)

Also, to specify a specific data type, add the prefix “<data type>#”. (e.g., “UINT#10#1000”

and “WORD#16#03E8”, etc.)

 30

9. Program

 31

9.1.1. Communications Data Flow
The following figure shows the data flow from when the Controller issues command data

with TCP socket communications to the destination device until when the Controller

receives the response data from the destination device. This program executes a series of

processing from the connect processing to the close processing continuously. The receive

processing is repeated when the response data is divided and multiple receive data are

sent.

1. Connect processing The Controller issues a TCP open request to the

destination device, and establishes a TCP

connection.

 ↓

2. Sending a command

The Controller issues a send message (command

data), which is set in the program, to the destination

device.

 ↓

3. Receiving a response

The Controller receives the receive message

(response data) from the destination device and

stores it in the specified internal variable.

 ↓

4. Close processing The Controller issues a close request to the

destination device, and terminates the TCP

connection.

*The response data is not sent after receiving command data or the response data is

sent immediately after a connection is established depending on the destination device

and command. With this program, the Send/Receive processing required/not required

setting can be set for the General-purpose Ethernet communications sequence setting

function block.

If Send only is set, the response data receive processing is not performed. If Receive

only is set, the command data send processing is not performed.

9. Program

9.1.2. TCP Socket Communications with Socket Service Instructions
This section explains the TCP socket communications performed by using the TCP socket

service function blocks (hereinafter referred to as socket service instructions) and outlines

the general operation of the send/receive message.

Additional Information
For details, refer to Communications Instructions in Section 2 Instruction Descriptions of the

NJ-series Instructions Reference Manual (Cat. No. W502).

●TCP Socket Services with Socket Service Instructions

This program uses the following 5 types of standard instructions to perform socket

communications.

Name Function blocks Description

Connect TCP

Socket

SktTCPConnect Connects the TCP port of the destination device.

TCP Socket

Send

SktTCPSend Sends data from a specified TCP socket.

TCP Socket

Receive

SktTCPRcv Reads the data from the receive buffer for a

specified TCP socket.

Close TCP

Socket

SktClose Closes a specified TCP socket.

Read TCP

Socket Status

SktGetTCPStatus Reads the status of a specified TCP socket.

By using this instruction, this program checks if the

receive processing is completed at the receive

processing and checks the closing status at the

close processing.

*The socket obtained by the Connect TCP socket instruction (SktTCPConnect) is used as

an input parameter for another socket service instruction. The data type of Socket is
structure _sSOCKET. The specifications are as follows.

Variable Meaning Description Data type Valid range Default
Socket Socket Socket _sSOCKET - -
 Handle Handle Handle for data

communications
UDINT Depends on

data type
-

 SrcAdr Local
address

Local address *1 _sSOCKET_ADD
RESS

- -

 PortNo Port
number

Port number UINT 1 to 65535

 IpAdr IP address IP address or host name
*2

STRING Depends on
data type

 DstAdr Destination
address

Destination address *1 _sSOCKET_ADD
RESS

- -

 PortNo Port
number

Port number UINT 1 to 65535

 IpAdr IP address IP address or host name
*2

STRING Depends on
data type

*1: The address indicates an IP address and a port number.
*2: A DNS or Hosts setting is required to use a host name.

 32

9. Program

●Send/Receive message

Send message

Controller
Destination

device

** **

Command data

** ** **

Terminator

** ** ** ** ** **

Receive message
(Response)

** **

Response data

** ** **

Terminator

** ** ** ** ** **

Receive message
(Error response)

** **

Response data (Error code)

** ** **

Terminator

** ** ** ** **

Header

Header

Header

●Communications sequence

TCP communications are performed between the destination device (server) and the

Controller (client) in the following procedure.

Controller
(Client)

Accept
processing

Connection
established

Data receive
request

Data send
request

Next data
send request

Close
processing

Data receive
request

Next data
send processing

Data send
processing

Connection
established

Connection requested

Send data

Acknowledgement (ACK)

Send data

Acknowledgement (ACK)

Connect
processing

Close
processing

Connection
closed

Connection
closed

Destination
device

(Server)

 33

9. Program

9.2. Destination Device Command

This section explains the destination device command used in this program.

9.2.1. Overview of the Command
This program uses “GETR TYP FWV (read the product type and firmware version of the

memory data) command” to read the information of the destination device.

Command Description

GETR Read the Reader/Writer settings.

Additional Information
For details, refer to Section 5 Command Line Interface in the V750-series UHF RFID System

User’s Manual (Cat. No. Z235).

9.2.2. Detailed Description of the Command
This section explains the formats used to read the information on the destination device by

executing the GETR TYP FWV (read the product type and firmware version of the memory

data) command.

●Command format of the send message

This is the command format of the message that is sent by the Controller to the destination

device according to the setting of the GETR TYP FWV (read the product type and firmware

version of the memory data) command.

•ASCII codes are sent except for the header and terminator.
Data Number of bytes Remarks

Command code 4 Fixed: ”GETR”
(Space *1) 1 Fixed: ” ” (Space)
(Parameter and
option *1)

1 and greater
*2

Fixed: ”typ” (product type) + ”+”fwv” (firmware

version)
Terminator 1 Fixed: [LF](16#0A)

*1: When this is not used, the terminator is moved forward.

*2: Any number of bytes can be set for parameters and 3 bytes for options.

 34

9. Program

 35

●Command format of the receive message

This is the response format of the message received by the Controller from the destination

device according to the setting of the GETR TYP FWV (read the product type and firmware

version of the memory data) command.

•ASCII codes are received except for the header and terminator.

Command
Number
of bytes

Remarks

Command code 4 Fixed: ”GETR” or Fixed: ”ICMD”
Response code 4 Destination error code

(Refer to 9.7.1. Error Code List.)
(Space *) 1 Fixed: ” ” (Space. Data are separated by a space.)
(Response data *) 1 and

greater
Fixed:
”typ=$”[product type V750]$”” (The product type is

enclosed in $” and $”.),”fwv=[Firmware version]”

(Firmware version)
(The information of GETR command options specified
with this program is returned.)

Terminator 1 Fixed: [LF](16#0A)
*The terminator is moved forward for an error message when there is no response data

because the command is undefined or the parameter of the send command is illegal.

9.2.3. Command Settings
This section explains the details on the settings of the GETR TYP FWV (read the product

type and firmware version of the memory data) command.

●Send data (command) settings

The send data is set in the SendMessageSet function block.

Variable Contents (Data type) Set value

Send_Header Send header (STRING[5]) ‘’(Setting unnecessary)

Send_Addr Send address (STRING[5]) ‘’(Setting unnecessary)

Send_Command Send data (STRING[256]) CONCAT('GETR’,‘ typ,’ fwv')

Send_Terminate Send terminator (STRING[5]) ‘$L’ ([LF]: 16#0A)

Variable
Contents
(Data type)

Data Description

Send_Data
Send message
(STRING[256])

CONCAT(Send_Header,
Send_Addr,
Send_Command,
Send_Check,
Send_Terminate)

Used as send data of
SktTCPSend instruction.

9. Program

●Receive data (response) that is stored

After a data check is performed on the receive data using the ReceiveCheck function block,

the receive data is stored as output receive data.

Variable Description (data type) Storage area

Recv_Buff
Receive data

(STRING[256])
Receive buffer

Recv_Data
Receive data

(STRING[256])

Receive data storage area

(stores the receive buffer data)

●Send/Receive message

*Send message
47 45 54 52 20 74 79 70 20 66 77 76 0A
'G' 'E' 'T' 'R' ' ' 't' 'y' ‘p’ ' ' ‘f’ ‘w’ ‘v’ [LF]

Send command Terminator

*Receive message 1 (at normal process)
47 45 54 52 30 30 30 30 20 74 79 70 3D 22
'G' 'E' 'T' 'R' ‘0000’ ' ' 't' 'y' ‘p’ ‘=’ ‘“’

Command Response code Data (parameter)

••• 22 20 66 77 76 3D ••• 0A
'”' ' ' ‘f’ ‘w’ ‘v’ ‘=’ [LF] Product type

Data (parameter)
Version

Terminator

*Receive message 2 (at error process)
47 45 54 52 ••• 0A
'G' 'E' 'T' 'R' [LF]

Command
Response code

Terminator

*Receive message 3 (at error process: undefined)

 49 43 4D 44 ••• 0A
'I' 'C' 'M' 'D' [LF]

Command
Response code

Terminator

 36

9. Program

9.3. Error Detection Processing

This section explains the error detection processing of this program.

9.3.1. Error Detection in the Program
This program detects and handles errors of the following items (1) to (4). For information

on error codes, refer to 9.7. Error Process.

(1)Communications errors in TCP socket communications using socket service instructions

Errors occurred in the program during TCP socket communications such as command

format error and parameter error are detected as communications errors. An error is

detected with the socket service instruction argument ErrorID.

(2)Timeout errors during communication with the destination device

When the connect processing, send processing, receive processing, or close processing is

not normally performed and cannot be completed within the monitoring time, it is detected

as a timeout error. An error is detected with the time monitoring function in the program.

For information on the time monitoring function of the timer in the program, refer to 9.3.2.

Time Monitoring Function.

(3)Errors in the destination device (Destination device error)

The destination device errors include a command error, a parameter error, and an

execution failure in the destination device. An error is detected with the response code,

which is returned from the destination device when an error occurs. For information on the

send/Receive messages, refer to 9.2. Destination Device Command.

Ethernet cable

Controller Destination device

(1)(2) (3)(4)

‘GETR’ ‘0000’ *…* 16#0A
Receive message
at normal process Command code

Response
code

Response data
Terminator

‘GETR’ **** 16#0A

Receive message
at error process Command code

Response
code

Terminator

‘ICMD’ **** 16#0A Receive message

at error process for
undefined command Command code

Response
code

Terminator

 37

9. Program

 38

(4)TCP connection status error that occurs when ending the processing

This program always performs the close processing at the end of the whole processing

regardless of whether each processing from the connect processing to the receive

processing ends normally or in an error. The TCP connection status variable TcpStatus of

the SktGetTCPStatus instruction is used to detect whether the close processing ended

normally. When the close processing is operated abnormally, the next connect processing

may not be performed normally. For the corrective actions of the TCP connection status

errors, refer to 9.7.2 TCP Connection Status Errors and Corrective Actions.

9. Program

 39

9.3.2. Time Monitoring Function
This section explains the time monitoring function of this program.

You can change the monitoring time settings by changing the variables of the

ParameterSet function block.

●Time monitoring function of the communication instruction processing

To avoid errors that keep a communications process executing without a stop, the timer in

this program is used to abort the processing (timeout). The timeout value for each

processing from the connect processing to the close processing is 5 seconds.

[Monitoring time of the communications instruction processing]

Processing Monitoring Variable name
Timeout
time

Connect
processing

Time from the start to the end of the
processing

TopenTime
5 seconds
(UINT#500)

Send
processing

Time from the start to the end of the
processing

TfsTime
5 seconds
(UINT#500)

Receive
processing

Time from the start to the end of the
processing
(for each receive processing)

TfrTime
5 seconds
(UINT#500)

Close
processing

Time from the start of the processing until
the TCP socket enters the close status.

TcloseTime
5 seconds
(UINT#500)

●Receive waiting function for divided packets/multiple response data

To repeat the receive processing, this function enables waiting for multiple responses that

arrive continuously or the receive data that is divided. If the next response does not arrive

from the destination device within the maximum waiting time, it is detected that the receive

processing ended.

[Receive waiting time]
Processing Monitoring Variable name Maximum waiting time

Receive wait Interval to receive data TrTime 300 ms (UINT#3)

●Resend/time monitoring function of TCP/IP

When a communication problem occurs, TCP/IP automatically resends the data and

monitors the processing time if there is no error in the Controller. If the processing ends in

an error, this program performs the close processing and stops the TCP/IP resend/time

monitoring function.

*If a TCP connection status error occurs at the close processing, the TCP/IP resend/time

monitoring function may be still operating. For information on the situation and corrective

actions, refer to 9.7.2. TCP Connection Status Error and Corrective Actions.

9. Program

 40

9.4. Variables

The table below lists the variables used in this program.

9.4.1. List of Variables
The data types, external variables (user-defined global variables/system-defined variables),

and internal variables used in this program are listed below.

●Data type (Structure)

[Communications processing status flags]
Name Data type Description

sStatus STRUCT Structure of the communications processing status flags

Busy BOOL
Communications processing in progress flag
TRUE: Processing is in progress.
FALSE: Processing is not in progress.

Done BOOL
Communications processing normal end flag
TRUE: Normal end / FALSE: Other than normal end

Error BOOL
Communications processing error end flag
TRUE: Error end / FALSE: Other than error end

[Socket service instruction execution flags]
Name Data type Description

sControl STRUCT Socket service instruction execution flags

 Send BOOL
Send processing instruction
TRUE: Executed / FALSE: Not executed

 Recv BOOL
Receive processing instruction
TRUE: Executed / FALSE: Not executed

 Open BOOL
Connect processing instruction
TRUE: Executed / FALSE: Not executed

 Close BOOL
Close processing instruction
TRUE: Executed / FALSE: Not executed

 Status BOOL
TCP socket status read processing instruction
TRUE: Executed / FALSE: Not executed

[Timer enable flags]
Name Data type Description

sTimerControl STRUCT Time monitoring timer enable flags

 Tfs BOOL
Send processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

 Tfr BOOL Receive processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

 Topen BOOL Connect processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

 Tclose BOOL Close processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

 Tr BOOL Receive waiting time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

9. Program

 41

[Send/Receive processing required/not required setting flag]
Name Data type Description

sComType STRUCT Send/Receive processing required/not required setting flags

 Send BOOL Send processing TRUE: Required / FALSE: Not required
*Specify this when sending a command.

 Recv BOOL Receive processing TRUE: Required / FALSE: Not required
*Specify this when receiving a response.

 Error BOOL
Send/Receive processing required/not required setting error
flag (This flag changes to ON when a setting error occurred.)

●Data type (Union)

[Error code processing]
Name Data type Description

uErrorFlgs UNION Error code processing union

BoolData
ARRAY[0..15]
 OF BOOL

2-byte error code is handled in units of 1 bit as 16-bit
string.
: TRUE (Error) / FALSE (Normal)
•Communications error

BoolData[0] : Send processing
BoolData[1] : Receive processing
BoolData[2] : Connect processing
BoolData[3] : Close processing
BoolData[4] : Processing number error

•Timeout error
BoolData[8] : Send processing
BoolData[9] : Receive processing
BoolData[10]: Connect processing
BoolData[11]: Close processing

•Others
BoolData[5] : Send/Receive required/not required

detection error
BoolData[12]: Destination device error
BoolData[6..7],[13..14]: Reserved
BoolData[15]: Error

WordData WORD 2-byte error code is processed as WORD at once.

9. Program

●External variables

[User-defined global variables]
Variable name Data type Description

Input_Start BOOL
Communication start switch
The program is started when this variable changes from
FALSE to TRUE.

Output_RecvMess STRING[256]
An area that stores the receive data (response) (256
bytes)

Output_ErrCode WORD

An area that stores the error flag for a communications
error or a timeout error that is detected at the connect
processing, TCP socket status read processing, receive
processing and close processing.
Normal end: 16#0000

Output_SktCmdsErrorID WORD

An area that stores the error code for a communications
error or a timeout error that is detected at the connect
processing, TCP socket status read processing and
receive processing.
Normal end: 16#0000

Output_SktCloseErrorID WORD

An area that stores the error code for a communications
error or a timeout error that is detected at the close
processing.
Normal end: 16#0000

Output_EtnTcpSta
_eCONNECTIO
N_STATE

An area that stores the TCP socket status
_ESTABLISHED: Connect status
_CLOSED: Close status

Output_MErrCode DWORD

An area that stores the destination device’s error code for
an FCS error or destination device error that is detected
after the receive processing.
Normal end: 16#00000000

[System-defined variable]
Variable name Data type Description

_EIP_EtnOnlineSta BOOL
The status of built-in EtherNet/IP port communications
TRUE: Can be used, FALSE: Cannot be used

Additional Information
For information on the system-defined variables, refer to Communications Instructions in 2

Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No. W502)

 42

9. Program

●Internal variables (instance variables)

The internal variables used to execute the function blocks in the program are listed below.

An internal variable is called an "instance". The name of each function block to use is

specified as the data type of the variable.

[Instances for user-defined function blocks]
Variable name Data type Description

ETN_ParameterSet_instan
ce

ParameterSet

Ethernet communications parameter setting function
block
This variable sets a destination IP address and
monitoring time for each processing from the connect
processing to the close processing.

ETN_SendMessageSet_in
stance

SendMessageSet

Ethernet communications send data setting function
block
This variable sets the send/receive processing
required/not required setting and send data.

ETN_ReceiveCheck_insta
nce

ReceiveCheck

Ethernet communications receive processing function
block
This variable stores the receive data and detects a
normal end or an error end.

*For information on the user-defined function blocks, refer to 9.5.3 Detailed Description of

Function Blocks.

[Instances for timer]
Variable name Data type Description

Topen_TON_instance TON
Counts the time taken to perform the TCP connect
processing.

Tfs_TON_instance TON Counts the time taken to perform the TCP send
processing.

Tfr_TON_instance TON Counts the time taken to perform the TCP receive
processing.

Tclose_TON_instance TON Counts the time taken to perform the close processing.
Tr_TON_instance TON Counts the time taken to wait for the next response.

[Instances for communications instructions]
Variable name Data type Description

SktTCPConnect_instance SktTCPConnect Connect TCP socket function block
SktTCPSend_instance SktTCPSend TCP socket send function block
SktTCPRcv_instance SktTCPRcv TCP socket receive function block
SktClose_instance SktClose Close TCP socket function block
SktGetTCPStatus_instance SktGetTCPStatus Read TCP socket status function block

Additional Information
For information on the communications instructions, refer to Communications Instructions in

Section 2 Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No.

W502).

 43

9. Program

 44

●Internal variables
Variable name Data type Description

Local_Status sStatus
Communications processing status flags
This variable is defined as sStatus structure.

Local_State DINT Processing number

Local_ErrCode uErrorFlgs
An area in which an error code is edited.
This variable is defined as uErrorFlgs union.

Local_ExecFlgs sControl
Socket service instruction execution flags
This variable is defined as sControl structure.

Local_SrcDataByte UINT The number of bytes to send

Local_SrcData
ARRAY[0..255]
OF BYTE

An area that stores the send data of the SktTCPSend
instruction (256 bytes)

Local_RecvData
ARRAY[0..2000]
OF BOOL

An area that stores the receive data of the SktTCPRcv
instruction (2000 bytes)

Local_ReceiveMessage STRING[256]
An area that stores the receive data that was converted
into a string. (256 characters）

Local_ReceiveSize UINT The size of the receive data of the SktTCPRcv instruction
Local_RecvDataLength UINT The total byte length of the receive data

Local_RecvCHNo UINT
The array number of the receive data stored in
Local_RecvData

Local_RecvCheckFlg BOOL
Destination device error detection instruction execution
flag
TRUE: Executed / FALSE: Not executed

Local_InitialSettingOK BOOL Initialization processing normal setting flag

Local_TONFlgs sTimerControl
Timer enable flags
This variable is defined as sTimerControl structure.

Local_ComType sComType
Send/Receive processing required/not required setting
flags
This variable is defined as sControl structure.

9. Program

 45

9.5. ST Program

9.5.1. Functional Components of the Program
This program is written in the ST language. The functional components are as follows.

Major classification Minor classification Description

1. Communications
processing

1.1. Starting communications
processing

1.2. Clearing the communications
processing status flags

1.3 Communications processing in
progress status

The communications processing is started.

2. Initialization
processing

2.1. Initializing the timer
2.2. Initializing the instructions
2.3. Initializing the instruction

execution flags
2.4. Initializing the timer enable flags
2.5. Initializing the error code

storage areas
2.6. Setting each processing

monitoring time and Ethernet
communications parameters

2.7. Setting the send/receive
processing required/not required
setting and send data

2.8. Converting send data from a
string to a BYTE array

2.9. Initializing the receive data
storage areas

2.10. Initialization setting end
processing

The Ethernet parameters are set and the
error code storage areas are initialized.
The send/receive required/not required
setting, send data and receive data are set.

3. Connect
processing

3.1. Determining the connect
processing status and setting the
execution flag

3.2. Enabling the connect instruction
monitoring timer

3.3. Executing the connect
instruction

The connect processing is performed.
The processing is performed
unconditionally after starting the
communications processing and executing
the initialization setting.

4. Send processing 4.1. Determining the send
processing status and setting the
execution flag

4.2. Enabling the send instruction
monitoring timer

4.3. Executing the send instruction

The processing is performed when the send
processing required/not required setting is
set to Required and the connect processing
ends normally.

5. Receive
processing

5.1 Determining the receive
processing status and setting the
execution flag

5.2 Enabling the receive waiting
time monitoring timer

5.3 Enabling the receive instruction
monitoring timer

5.4 Executing the receive instruction
5.5 Executing the TCP socket status

read processing
5.6 Executing the destination device

error detection instruction

The processing is performed when the
receive processing required/not required
setting is set to Required and the send
processing ends normally.
If multiple receive data arrive, the receive
processing is repeated.
The receive data is stored and checked.

9. Program

 46

Major classification Minor classification Description

6. Close processing 6.1. Determining the close
processing status and setting the
execution flag

6.2. Enabling the close instruction
monitoring timer

6.3. Executing the close instruction
6.4. Executing the TCP socket

status read processing

The close processing is performed.
The processing is performed in the
following cases.

•When the receive processing required/not
required setting is set to Not required

 and the send processing ends normally
•When the receive processing ends
normally

•When any of the connect processing, send
processing or receive processing ends in
error

7. Processing
number error
process

7. Processing number error process The error process is performed when a
non-existent processing number was
detected.

9. Program

9.5.2. Program List
This section shows the details on the program.

The function blocks (ParameterSet, SendMessageSet, and ReceiveCheck) are used to

perform the communications settings, send data (command data) setting and receive data

(response data) check that must be changed according to the destination device. For

information on how to change these values, refer to 9.5.3 Detailed Description of Function

Blocks.

●Program: Program0

(General-purpose Ethernet communications Connection check program)

1. Communications processing

 47

9. Program

2. Initialization processing

 48

9. Program

 49

9. Program

3. Connect processing

 50

9. Program

4. Send processing

 51

9. Program

5. Receive processing

 52

9. Program

 53

9. Program

6. Close processing

 54

9. Program

7. Processing number error process

 55

9. Program

 56

9.5.3. Detailed Description of Function Blocks
The user-defined function blocks are shown below.

The code which you need to edit according to the destination device is indicated by the red

frames on the function blocks below.

●ParameterSet function block

(General-purpose Ethernet communications parameter setting)
Instruction Meaning ST expression

ParameterSet
General-purpose Ethernet
Communications
parameter setting

ETN_ParameterSet_instance(Execute,
TopenTime,
TfsTime,
TrTime,
TfrTime,
TcloseTime,
SrcPort,
DstIPAddr,
DstPort);

[Internal variable]

None

[Input/Output]

Name I/O Data type Description

Execute Input BOOL
Execution flag: The function block is executed when this variable
changes to TRUE and it is stopped when this variable changes to
FALSE.

TopenTime Output UINT
Connect processing monitoring time:
This variable sets the monitoring time of the connect processing in
increments of 10 ms.

TfsTime Output UINT
Send processing monitoring time:
This variable sets the monitoring time of the send processing in
increments of 10 ms.

TrTime Output UINT
Receive wait monitoring time:
This variable sets the waiting time for the receive data in increments of
100 ms.

TfrTime Output UINT
Receive processing monitoring time:
This variable sets the monitoring time of the receive processing in
increments of 10 ms.

TcloseTime Output UINT
Close processing monitoring time:
This variable sets the monitoring time of the close processing in
increments of 10 ms.

SrcPort Output UINT Local port number: This variable sets the local port number.

DstIPAddr Output
STRING
[256]

Destination IP address: This variable sets the destination IP address.

DstPort Output UINT Destination port number: This variable sets the destination port number.

Busy Output BOOL Busy

Done Output BOOL Normal end

Error Output BOOL Error end

ErrorID Output WORD Error code

ErrorIDEx Output DWORD Expansion error code

Not used
(Not used in this program.)

[External variable]

None

9. Program

[Program]

 57

9. Program

 58

●SendMessageSet function block

(General-purpose Ethernet communications send data setting)
Instruction Meaning ST expression

SendMessageSet
General-purpose Ethernet
communications
send data setting

ETN_SendMessageSet_instance(Execute,
Send_Data,
ComType);

[Internal variables]

Name Data type Description
Send_Header STRING[5] Send header: Header of the send message

Send_Addr STRING[5] Destination device address: Address of the destination device

Send_Command STRING[256]
Destination device command:
Command sent to the destination device

Send_Check STRING[5] Send check code: Check code of the send message

Send_Terminate STRING[5] Send terminator: Terminator of the send message

[Input/Output]

Name I/O Data type Description

Execute Input BOOL
Execution flag: The function block is executed when this
variable changes to TRUE and it is stopped when this variable
changes to FALSE.

Send_Data Output STRING[256]
Send data: This variable sets a command that is sent to the
destination device.

ComType Output BYTE
Send/Receive type: This variable sets whether send/receive
processing are required.

1:Send only, 2: Receive only, 3: Send and receive
Busy Output BOOL Busy

Done Output BOOL Normal end

Error Output BOOL Error end

ErrorID Output WORD Error code

ErrorIDEx Output DWORD Expansion error code

Not used
(Not used in this project.)

[Internal variable]

None

9. Program

[Program]

 59

9. Program

 60

●ReceiveCheck function block

(General-purpose Ethernet communications receive processing)
Instruction Meaning ST expression

ReceiveCheck
General-purpose Ethernet
Communications
receive processing

ETN_ReceiveCheck_instance(Execute,
Recv_Data,
Recv_Buff,
Error,
ErrorID,
ErrorIDEx);

[Internal variables]

Name Data type Description
Receive_Check STRING[5] FCS receive value:

FCS receive result of the receive data
Calc_Check STRING[5] FCS calculation value:

FCS calculation result of the receive data

[Input/Output]

Name I/O Data type Description

Execute Input BOOL
Execution flag: The function block is executed when this
variable changes to TRUE and it is stopped when this
variable changes to FALSE.

tLength Input UINT Receive data length: The byte length of the receive data

Recv_Data In-out STRING[256]
Receive data storage area: An area that stores the
receive data after detection

Recv_Buff In-out STRING[256]
Receive buffer: An area that temporarily stores the
receive data that is used for detection.

ErrorID In-out WORD
Error code: This variable stores 16#1000 for a destination
device error and 16#2000 for an FCS error.

ErrorIDEx In-out DWORD
Expansion error code:
This variable stores the FCS determination result or
destination device error code.

Busy Output BOOL Busy

Done Output BOOL Normal end
Not used
(Not used in this program.)

Error Output BOOL Error end: TRUE when an error occurs.

[External variable]

None

9. Program

[Program]

 61

9. Program

9.6. Timing Charts

The timing charts of this program are shown below.

●Start & End processing

(Normal end) (Error end)

If Input_Start changes from TRUE to FALSE during execution, a normal end or an error end is

output for one period after the processing is completed as shown below.

(Normal end) (Error end)

 Input_Start

Local_Status.Busy

Local_Status.Done

Local_ErrCode

.WordData
16#0000

Local_ErrCode

.BoolData[15]

Close processing

Connection processing

Send processing

Receive processing

Local_Status.Error

16#****

Output_SktCmdsErrorID 16#0000 16#****

Output_SktCloseErrorID 16#0000 16#****

Outputl_ErrCode 16#0000 16#****

 Input_Start

Local_Status.Busy

Local_Status.Done

Local_ErrCode

.WordData
16#0000

Local_ErrCode

.BoolData[15]

Close processing

Connection processing

Send processing

Receive processing

Local_Status.Error

Output_SktCmdsErrorID 16#0000

Output_SktCloseErrorID 16#0000

Output_ErrCode 16#0000

 Input_Start

Local_Status.Busy

Local_Status.Done

Local_Status.Error

Output for one period

Input_Start

Local_Status.Busy

Local_Status.Done

Local_Status.Error Output for one period

 62

9. Program

●Connect processing

 (Normal end) (Error end)

 (Timeout)

 Input_Start

SktTCPConnect

_instance.Busy

SktTCPConnect

_instance.Done

SktTCPConnect

_instance.Error

SktTCPConnect

_instance.Execute

Topen_TON

_instance.Q

Local_ErrCode

.BoolData[2]

SktClose

_instance.Execute

Output_SktCmds
ErrorID 16#0000 16#****

Local_ErrCode

.WordData
16#0000 16#0004

 Input_Start

SktTCPConnect

_instance.Busy

SktTCPConnect

_instance.Done

SktTCPConnect

_instance.Error

SktTCPConnect

_instance.Execute

Topen_TON

_instance.Q

Local_ErrCode

.BoolData[2]

SktTCPSend

_instance.Execute

Output_sktCmds
ErrorID 16#0000

Local_ErrCode

.WordData
16#0000

 Input_Start

SktTCPConnect

_instance.Busy

SktTCPConnect

_instance

SktTCPConnect

_instance.Error

SktTCPConnect

_instance.Execute

Topen_TON

_instance.Q

Local_ErrCode

.BoolData[10]

SktClose

_instance.Execute

Monitoring
time elapsed

Local_ErrCode

.WordData
16#0000 16#0400

Output_SktCmds
ErrorID 16#0000 16#FFFF

 63

9. Program

●Send processing

 (Normal end) (Error end)

 (Timeout)

 SktTCPConnect

_instance.Done

SktTCPSend

_instance.Busy

SktTCPSend

_instance.Done

SktTCPSend

_instance.Error

SktTCPSend

_instance.Execute

Tfs_TON

_instance.Q

Local_ErrCode

.BoolData[0]

SktGetTCPStatus

_instance.Execute

Output_sktCmds
ErrorID 16#0000

Local_ErrCode

.WordData
16#0000

 SktTCPConnect

_instance.Done

SktTCPSend

_instance.Busy

SktTCPSend

_instance.Done

SktTCPSend

_instance.Error

SktTCPSend

_instance.Execute

Tfs_TON

_instance.Q

Local_ErrCode

.BoolData[0]

SktClose

_instance.Execute

Output_sktCmds
ErrorID 16#0000 16#****

Local_ErrCode

.WordData
16#0000 16#0001

 SktTCPConnect

_instance.Done

SktTCPSend

_instance.Busy

SktTCPSend

_instance.Done

SktTCPSend

_instance.Error

SktTCPSend

_instance.Execute

Tfs_TON

_instance.Q

Local_ErrCode

.BoolData[8]

SktClose

_instance.Execute

Monitoring
time elapsed

Output_sktCmds
ErrorID 16#0000 16#FFFF

Local_ErrCode

.WordData
16#0000 16#0100

 64

9. Program

●Receive processing

 (Repeat) (Normal end)

(Destination device error) (Error end)

Receive data exists.

Receive data
exists.

SktTCPSend

_instance.Done

SktTCPRcv

_instance.Busy

SktTCPRcv

_instance.Error

SktGetTCPStatus

_instance.DatRcvFlag

Local_ErrCode

.BoolData[1]

SktTCPRcv

_instance.Execute

Tr_TON_instance.Q

SktTCPRcv

_instance.Done

SktGetTCPStatus

_instance.Execute

Output_sktCmds
ErrorID 16#0000

Local_ErrCode

.WordData
16#0000

Receive waiting time

SktTCPSend

_instance.Done

SktTCPRcv

_instance.Busy

SktTCPRcv

_instance.Done

SktTCPRcv

_instance.Error

SktTCPRcv

_instance.Execute

Local_ErrCode

.BoolData[12]

SktGetTCPStatus

_instance.DatRcvFlag

SktClose

_instance.Execute

Tr_TON_instance.Q

No receive data

No destination
device error

SktGetTCPStatus

_instance.Execute

Output_sktCmds
ErrorID 16#0000

Local_ErrCode

.WordData
16#0000

Receive waiting time

SktTCPSend

_instance.Done

SktTCPRcv

_instance.Busy

SktTCPRcv

_instance.Done

SktTCPRcv

_instance.Error

SktTCPRcv

_instance.Execute

Local_ErrCode

.BoolData[12]

SktGetTCPStatus

_instance.DatRcvFlag

SktClose

_instance.Execute

Tr_TON_instance.Q

No receive data

SktGetTCPStatus

_instance.Execute

Destination device
error occurred.

Output_sktCmds
ErrorID 16#0000

Local_ErrCode

.WordData
16#0000 16#1000

 SktTCPSend

_instance.Done

SktTCPRcv

_instance.Busy

SktTCPRcv

_instance.Done

SktTCPRcv

_instance.Error

Local_ErrCode

.BoolData[1]

SktClose

_instance.Execute

SktTCPRcv

_instance.Execute

SktGetTCPStatus

_instance.DatRcvFlag

Tr_TON_instance.Q

SktGetTCPStatus

_instance.Execute

Receive data exists.

Output_sktCmds
ErrorID 16#0000 16#****

Local_ErrCode

.WordData
16#0000 16#0002

 65

9. Program

(Timeout)

 66

Receive data exists.

Monitorin

SktTCPRcv

g time

elapsed.

_instance.Busy

SktTCPRcv
_instance.Done

SktTCPRcv

_instance.Error

Tfr_TON _instance .Q

Local_ErrCode
.BoolData[9]

SktClose.

_instance.Execute

SktTCPSend
_instance.Done

SktGetTCPStatus

SktTCPRcv
_instance .Execute

SktGetTCPStatus
_instance .DatRcvFlag

_ins tance .Execute

Output_sktCmds

ErrorID 16#0000 16#FFFF

Local_ErrCode

WordData 16#0000 16#0200

9. Program

●Close processing

 (Normal end) (Error end)

 (Timeout)

SktClose

_instance.Busy

SktClose

_instance.Done

SktClose

_instance.Error

SktClose

_instance.Execute

Tclose_TON

_instance.Q

Local_ErrCode

.BoolData[3]

Tr_TON_instance.Q

etc

SktGetTCPStatus

_instance.TcpSta
_XXXX _CLOSED

SktGetTCPStatus

_instance.Execute

To End processing

Output_skTclose

ErrorID
16#0000

Local_ErrCode

.WordData
16#0000

SktClose

_instance.Busy

SktClose

_instance.Done

SktClose

_instance.Error

SktClose

_instance.Execute

Tclose_TON

_instance.Q

Local_ErrCode

.BoolData[3]

Tr_TON_instance.Q

etc

SktGetTCPStatus

_instance.TcpSta
_XXXX

SktGetTCPStatus

_instance.Execute

To End processing

Output_Sktclose

ErrorID
16#0000 16#****

Local_ErrCode

.WordData
16#000816#****

SktClose

_instance.Busy

SktClose

_instance.Done

SktClose

_instance.Error

SktClose

_instance.Execute

Tclose_TON

_instance.Q

Local_ErrCode

.BoolData[11]

Tr_TON_instance.Q

etc

SktGetTCPStatus

_instance.TcpSta
_XXXX

SktGetTCPStatus

_instance.Execute

≠_CLOSED

Monitoring time
elapsed.

To End processing

Output_SktClose

ErrorID
16#0000 16#FFFF

Local_ErrCode

.WordData
16#**** 16#0800

 67

9. Program

 68

9.7. Error Process

9.7.1. Error Code List
The error codes for this program are shown below.

●Error flag (Error end/timeout) [Output_ErrCode]

If the connect processing, send processing, receive processing or close processing ends in

error or timed out, the error flag will be set in the Output_ErrCode variable.

Error flag Description

16#0000 Normal end

16#0001 The send processing ended in error.

16#0002 The receive processing ended in error.

16#0004 The connect processing ended in error.

16#0008 The close processing ended in error.

16#0100 The send processing did not end in time.

16#0200 The receive processing did not end in time.
(Including when an arrival of the response cannot be checked.)

16#0400 The connect processing did not end in time.

16#0800 The close processing did not end in time.

16#0010 Processing number error

16#0020 Send/Receive required/not required detection error

16#1000 Destination device error

16#2000 Destination device FCS (checksum) error

16#8000 Error occurrence

*The error flags detected for each processing are added and the addition result is stored in

the error flag.

(Example) The connect TCP socket instruction error end + Close status check timeout

WORD#16#8000 (Error occurrence)

+WORD#16#0001 (TCP socket connect instruction ended in error)

+WORD#16#0100 (Close status check timeout)

↓

Output_ErrorID: WORD#16#8101

9. Program

●Error codes [Output_SktCmdsErrorID], [Output_SkTcloseErrorID]

If an error occurs in the connect processing, send processing or receive processing, the

error code is stored in the Output_SktCmdsErrorID variable and then the close processing

is performed.

If an error occurs in the close processing, the error code is stored in the

Output_SkTcloseErrorID variable and the processing ends. The main error codes are

shown below.

Error code Description
16#0000 Normal end
16#0400 An input parameter for an instruction exceeded the valid range for an input variable.
16#0407 The results of instruction processing exceeded the data area range of the output parameter.
16#2000 An instruction was executed when there was a setting error in the local IP address.

16#2002
Address resolution failed for a destination node with the domain name that was specified in
the instruction.

16#2003

The status was not suitable for execution of the instruction.
•SktTCPConnect Instruction

The TCP port that is specified with the SrcTcpPort input variable is already connected.
The destination node that is specified with DstAdr input variable does not exist.
The destination node that is specified with DstAdr and DstTcpPort input variables are not
waiting for a connection.

•SktTCPRcv Instruction
The specified socket is receiving data.
The specified socket is not connected.

•SktTCPSend Instruction
The specified socket is sending data.
The specified socket is not connected.

16#2006 A timeout occurred for a socket service instruction.
16#2007 The handle that is specified for the socket service instruction is not correct.

16#2008
The maximum resources that you can use for socket service instructions at the same time
was exceeded.

16#FFFF Processing ends without completing the executing of an instruction.

Additional Information
For details, refer to A-1 Error Code Details and A-2 Error Code Descriptions under
Appendices in the NJ-series Instructions Reference Manual (Cat. No. W502).

Additional Information
For details on socket service errors and troubleshooting, refer to 9-7 Precautions in Using
Socket Services of Chapter 9 Socket Service in the NJ-series CPU Unit Built-in EtherNet/IP
Port User's Manual (Cat. No. W506).

 69

9. Program

 70

●TCP connection status error [Output_EtnTcpSta]

If the TCP connection status does not enter the normal status (_CLOSED) in time after the

close processing, a TCP connection status code is set in the Output_EtnTcpSta variable. (If

the close processing ends in error, check this also.)

Error code enumerator

_eCONNECTION_STATE
Description

_CLOSED Connection closed. (Normal status)

_LISTEN Waiting for connection

_SYN SENT SYN sent in active status.

_SYN RECEIVED SYN sent and received.

_ESTABLISHED Already established.

_CLOSE WAIT FIN received and waiting for completion.

_FIN WAIT1 Completed and FIN sent.

_CLOSING Completed and exchanged FIN. Awaiting ACK.

_LAST ACK FIN received and completed. Awaiting ACK.

_FIN WAIT2 Completed and ACK received. Awaiting FIN.

_TIME WAIT After closing, pauses twice the maximum segment life (2MSL).

9. Program

●Destination device error code

The destination device error code is stored in the Output_MErrCode variable.

When 16#2000 is stored in Output_ErrCode, the FCS value of the data received from the

destination device is stored in Output_MErrCode.

When 16#1000 is stored in Output_ErrCode, the error number is stored in

Output_MErrCode as the destination device error code.

Bit 31 24 23 16 15 8 7 0

Response code

16#0000
16#**:Main 16#**:Sub

Note1: 'x' character in response code means one character in the list of 0 to 9 or A to F.

 71

9. Program

Note2: Depends on the specification of IC chip equipped in the RF tag. (It occurs at Monza chip when it

specified the lock bit which does not exist in its memory map.

Additional Information
For details and troubleshooting the destination device errors, refer to Section 7

Troubleshooting Alarms and Errors in the V750-series UHF RFID System User's Manual

(Cat. No. Z235).

 72

9. Program

9.7.2. TCP Connection Status Error and Corrective Actions
This section describes the situation in which the TCP connection status error occurs and

explains the corrective actions.

●Affects of the TCP connection status error

After a TCP connection status error occurs, if this program is executed again without any

corrective action or without notifying the error, then the destination node specified with the

destination IP address (DstAdr) input variable and destination port (DstTcpPort) input

variable may not be waiting for a connection. (Hereinafter this error is referred to as a

connect processing error.) This may be affected by the TCP connection status error that

occurred when the previous communication processing ended. (For error details, refer to

9.7.1 Error Code List.)

●Situation in which the TCP connection status error occurs

Both a TCP connection status error after the close processing and a connect processing

error that occurs when the next communications processing is performed can be caused

by the fact that the close processing is not completed at the destination device. In this

situation, although all processing (until the close processing) of the program ended in the

Controller, the close processing completion notification is not received from the destination

device (It is not confirmed that the close processing is completed at the destination device).

●Corrective actions

The close processing may not be completed at the destination device. Check if the

communications port of the destination device is closed. If not closed or not possible to

check, reset the communications port of the destination device. The communications port

of the destination device can be reset by executing restart operation from the software or

by cycling the power supply. For details, refer to the manual for each destination device.

Precautions for Correct Use

Make sure the destination device is disconnected from other device before resetting the

communications port of the destination device.

●State of the Controller at a TCP connection status error

When a TCP connection status error occurs, the processing of this program is completed.

However, the resend/time monitoring function of TCP/IP , which is described in 9.3.2. Time

Monitoring Function, may be operating. This resend processing will stop in the following

cases. Therefore, you do not have to stop it.

•When a connect processing request is made again by re-executing the program

•When a communications problem such as cable disconnection is cleared during resend

processing

•When the resend processing is completed with the TCP/IP time monitoring (timeout)

function

•When the Controller is restarted or the power supply is turned OFF
 73

10. Revision History

 74

10. Revision History

Revision

code

Date of revision Revision reason and revision page

01 2013/04/15 First edition

2013

 0911(-)P543-E1-01

	1. Related Manuals
	2. Terms and Definition
	3. Remarks
	4. Overview
	5. Applicable Devices and Support Software
	5.1. Applicable Devices
	5.2. Device Configuration

	6. Ethernet Communications Settings
	6.1. Ethernet Communications Settings
	6.1.1. Communications Settings between the Personal Computer and the RFID Reader/Writer
	6.1.2. Communications Settings between the Controller and the RFID Reader/Writer

	6.2. Example of Checking Connection

	7. Connection Procedure
	7.1. Work Flow
	7.2. Setting Up the RFID Reader/Writer
	7.2.1. Parameter Setting

	7.3. Setting Up the Controller
	7.3.1. Starting the Sysmac Studio and Importing the Project File
	7.3.2. Checking the Parameters and Building
	7.3.3. Going Online and Transferring the Project Data

	7.4. Connection Status Check
	7.4.1. Executing the Program and Checking the Receive Data

	8. Initialization Method
	8.1. Controller
	8.2. RFID Reader/Writer

	9. Program
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications with Socket Service Instructions

	9.2. Destination Device Command
	9.2.1. Overview of the Command
	9.2.2. Detailed Description of the Command
	9.2.3. Command Settings

	9.3. Error Detection Processing
	9.3.1. Error Detection in the Program
	9.3.2. Time Monitoring Function

	9.4. Variables
	9.4.1. List of Variables

	9.5. ST Program
	9.5.1. Functional Components of the Program
	9.5.2. Program List
	9.5.3. Detailed Description of Function Blocks

	9.6. Timing Charts
	9.7. Error Process
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Error and Corrective Actions

	10. Revision History

