

OEN_Communication 1.0.22

Sysmac Function Block Library

for Modbus, EtherCAT SDO and Modem

Communication

User’s Manual

Application Library

2

Contents
Introduction ... 3
Functions and FunctionBlocks .. 7
1. NX_ModbusRTU_Slave .. 8
2. NX_ModbusRTU_Master .. 13
3. ModbusTCP_Server .. 19
4. ModbusTCP_Client ... 23
5. NodeDatRead .. 28
6. NodeDatWrite .. 33
7. NodeDatCmp_Read_Write.. 36
8. NX_SendSMS ... 39
9. NX_RcvSMS .. 43
10. NX_ClearModemBuffer ... 45
11. Template .. 47

3

Introduction

Thank you for using the Application Library: OEN_Communication

Use it when programming with the automation software Sysmac Studio.

This manual contains information that is necessary to use the Library with Sysmac Studio.

Hereinafter, the function blocks are described as FB, functions as FNs.

1.1. Notice

This manual describes the necessary information to use the Application Library. Refer also to

the user's manuals for Application Library, the Sysmac Studio Version1 Operation Manual

(Cat.No. W504)

Please read and understand this manual before using the Library. Keep this manual in a safe

place where it will be available for reference during operation.

4

1.2. Terms and Conditions Agreement

1 NO WARRANTY

1） The functions and function block Library is distributed as a sample in the hope that it will

be useful, but without any warranty. It is provided “as is” without warranty of any kind, either

expressed or implied, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. The entire risk as to the quality and performance of

the function block is with you. Should the function block prove defective, you assume the

cost of all necessary servicing, repair or correction.

2） In no event unless required by applicable law the author will be liable to you for damages,

including any general, special, incidental or consequential damages arising out of the use

or inability to use the function block (including but not limited to loss of data or data being

rendered inaccurate or losses sustained by you or third parties or a failure of the function

block to operate with any other programs), even if the author has been advised of the

possibility of such damages.

2 LIMITATION OF LIABILITY

1) OMRON SHALL HAVE NO LIABILITY FOR DEFECT OF THE SOFTWARE.

2) OMRON SHALL HAVE NO LIABILITY FOR SOFTWARE PARTS DEVELOPED BY THE

USER OR ANY THIRD PARTY USING THE FUNCTION BLOCK DESCRIBED ON THIS

MANUAL.

3 APPLICABLE CONDITIONS

USER SHALL NOT USE THE SOFTWARE FOR THE PURPOSE THAT IS NOT

 PROVIDED IN THE ATTACHED USER MANUAL.

4 CHANGE IN SPECIFICATION

The software specifications and accessories may be changed at any time based on

 improvements and other reasons.

5 ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate;

however, no responsibility is assumed for clerical, typographical, or proofreading errors, or

omissions.

5

1.3. Safety Precautions

Definition of Precautionary Information
The following notation is used in this manual to provide precautions required to ensure safe
usage of OEN_Communication Library.
The safety precautions that are provided are extremely important to safety. Always read and
heed the information provided in all safety precautions.

The following notation is used.

Indicates a potentially hazardous situation which, if not

avoided, could result in death or serious injury. Additionally,

there may be severe property damage.

Indicates a potentially hazardous situation which, if not

avoided, may result in minor or moderate injury, or property

damage.

 Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure safe usage of the
product.

 Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and
performance.

 Additional Information

Additional information to read as required.
This information is provided to increase understanding or make operation easier.

The triangle symbol indicates precautions (including warnings).

The specific operation is shown in the triangle and explained in

text.

This example indicates a general precaution.

The filled circle symbol indicates operations that you must do.

The specific operation is shown in the circle and explained in

text.

This example shows a general precaution for something that

you must do.

6

Warning list

Emergency stop circuits, interlock circuits, hardware limit and similar safety measures

must be provided in external control circuits.

Using this FB in a device, confirm that the program and FB operate properly.

Design a program so that safety measures such as fail-safe circuits are implemented

outside of the FB

Caution list

Confirming an operation of the control program, including this FB. Trial operation

such as the concerned motor runs in low velocity is recommended.

Performing adjustment of the device controlled by the program with this FB, secure

the safety of the machine.

Do not use this FB for the system with devices and versions not specified in this

document. To use, contact your OMRON representative

If a Task Period Exceeded Error occurred by executing this FB, the CPU Unit shifts to

an error state.

Make sure to set the execution task period to an appropriate value by referring to the

execution time of this FB.

Do not delete the instances from the program with online editing during an execution

of this FB.

Program communication will stop in error.

Make sure to set the input parameters of this FB appropriately in accordance with the

actual device.

Make settings as described in this manual.

7

Functions and FunctionBlocks

Applications

The OEN_Communication is a set of functions and function blocks for Modbus, EtherCAT SDO

and Modems Communication. If not notified, these function blocks are compatible with all

Sysmac series PLCs having Firmware 1.18 or higher.

Library Change Log

 See details on each Function/FunctionBlock

1.00.18 Added 4 new modbus function blocks.
ModbusRTU Slave/Master.
ModbusTCP Client/Server.
The master/client are configurable based on a request list.
The slave/server do have accesslist to control R, W, RW properties.

1.00.19 Renamed a variable called "Dummy", due to a function in OEN_Toolbox called "Dummy"

1.00.20 Rebuilt FB's for EtherCat SDO handling to use dynamic ARRAY for NodeDat. Removed Input
NoOfNodes.

1.00.21 Redesigned the NX_SendSMS, NX_RcvSMS, NX_ClearModemBuffer

1.00.22 Changed NX_ModbusRTU_Master and ModbusTCP_Client.
Separated modbus addresses into local and remote. So that one master can be used for many similar
slaves.

8

1. NX_ModbusRTU_Slave

Modbus RTU slave that are based on NX_SerialRcv, NX_SerialSend, NX_SerialBufClear function

blocks in Sysmac studio.

For description regarding DevicePort input, see the help for the NX_Serial function blocks.

The input StatusFlag_EndDetection are used to check the silence period of 3.5 characters. See

“Precautions for correct use”.

The slave will respond to any valid modbus requests.

If the request does try to write to an address set as read only (R), the slave will send a modbus

exception code 02.

If the request does try to read/write to a coil/register outside of the range of your ARRAY, the slave

will send a modbus exception code 02.

Supported modbus functions codes:

 Fn01 Read Coils

 Fn02 Read discrete inputs

 Fn03 Read holding registers

 Fn04 Read input registers

 Fn05 Write single coil

 Fn06 Write single holding register

 Fn15 Write multiple coils

 Fn16 Write multiple holding registers

 Fn23 Read/Write multiple holding registers

1.1. FB Layout

9

1.2. Input Variables

Name Data type Description

Enable BOOL Enable the slave

SlaveID UINT Modbus address

DevicePort _sDEVICE_PORT Reference to the serial card.

StatusFlag_EndDetection BOOL To determine the end of the request from the
master.

UseAccesslist BOOL FALSE: All registers are RW

TRUE: The register access is determined from
the accesslist

1.3. In-Out Variables

Name Data type Description

Accesslist sModbusAccess[*]

(Dynamic size)

List of address ranges to determine R/W/RW
access.

Coils BOOL[*]

(Dynamic size)

ARRAY[10..19] OF BOOL will be modbus
address 10 – 19.

DiscreteInputs WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

InputRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

HoldingRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

1.4. Output Variables

Name Data Type Description

Status BOOL True = Activated

Error BOOL

ErrorID WORD See ErrorID’s for NX_SerialRcv, NX_SerialSend,
NX_SerialBufClear in the Instructions Reference Manual

1.5. Revisions

Revision In Library Correction

1.0.20 1.00.22

1.6. Credits

 Name

Omron - Norway Bjarte Myklebust

10

1.7. Example

To control the read/write access:
Set the UseAccesslist to “TRUE”.

Create a variable E.G AccessList ARRAY[0..3] OF OEN\Modbus\sModbusAccess

The number of array elements of the In/Out AccessList are dynamic, so you can specify as many as

you need.

Sample code for filling data into AccessList:

If you want to grant read and write access to all registers, set the input UseAccesslist to “FALSE”.

Since the In/Out AccessList requires a variable, you can create a variable E.G. AccessList

 ARRAY[0..0] OF OEN\Modbus\sModbusAccess

The four In/Out Coils, DiscreteInputs, InputRegisters, HoldingRegisters do also require a variable.

If E.G. you don’t want to use DiscreteInputs, create a variable DiscreteInputs ARRAY[0..0] OF BOOL

To avoid having to write OEN\Modbus to address the namespace when programming:

Add OEN\Modbus in the “Namespace – using”:

11

Precautions for correct use

The FB can’t be used for serial option boards. (Mounted in the front slot of NX1P)

Set the parameters on the serial card: (Adjust Baud rate/parity for your application)

In the I/O Map:

Right-click on the correct card, and select “Display Node Location Port”

12

You do need these two variables to operate the function block.

13

2. NX_ModbusRTU_Master

Modbus RTU slave that are based on NX_SerialBufClear, NX_SerialRcv, NX_SerialSend function

blocks in Sysmac Studio.

For description regarding DevicePort input, see the help for the NX_Serial function blocks.

The input StatusFlag_EndDetection are used to check the silence period of 3.5 characters. See

“Precautions for correct use”.

The master will sequentially perform the requests with the member .Enable set to true.

How often the requests are performed are controlled by the Input “UpdateRate”.

If one of the requests encounters an error, the error will be set to true, and the value of the Array index

for the request with errors on the Output “ErrorRequestNo”.

Supported modbus functions codes:

 Fn01 Read Coils

 Fn02 Read discrete inputs

 Fn03 Read holding registers

 Fn04 Read input registers

 Fn05 Write single coil

 Fn06 Write single holding register

 Fn15 Write multiple coils

 Fn16 Write multiple holding registers

 Fn23 Read/Write multiple holding registers

2.1. FB Layout

14

2.2. Input Variables

Name Data type Description

Enable BOOL Enable the slave

DevicePort BOOL Reference to the serial card.

SlaveID _sDEVICE_PORT Modbus address

StatusFlag_EndDetection UINT To determine the end of the response from the
slave(s).

UpdateRate BOOL Time between each poll of the request list.

NodeTimeOut TIME Timeout for each request.

Requests TIME List of requests to the slave(s)

2.3. In-Out Variables

Name Data type Description

Coils BOOL[*]

(Dynamic size)

ARRAY[10..19] OF BOOL will be modbus
address 10 – 19.

DiscreteInputs WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

InputRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

HoldingRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

2.4. Output Variables

Name Data Type Description

Status BOOL True = Activated

RequestCycleDone BOOL True for one cycle, when polling the request list is
completed.

RequestCycleTime TIME The time used for polling the request list.

Error BOOL

ErrorID WORD If Error ID = 16#0C10, you will find a modbus exception
code in ErrorIDEx

ErrorIDEx DWORD Modbus exception code

ErrorRequestNo DINT The array index of the request that got an error.

2.5. Revisions

Revision In Library Correction

1.0.22 1.00.22 Separated modbus addresses into local and remote. So that one master can be used for
many similar slaves.

2.6. Credits

 Name

Omron - Norway Bjarte Myklebust

15

2.7. Example

How to set up the requests:
Create a variable for requests E.G. “Requests”, of the datatype ARRAY[X..Y] OF

OEN\Modbus\sModbusReq.

The number of array elements of the In/Out “Requests” are dynamic, so you can spesify as many as

you need.

Sample code for filling data into the “Request” variable:

//Read coils 1000-1009

Requests[0].Enable := TRUE;

Requests[0].FunctionCode := eFun#Fn01_ReadCoils;

Requests[0].NodeAdr := 1;

Requests[0].Read.StartAddressRemote := 1000; //Address in the slave/server

Requests[0].Read.StartAddressLocal := 1000; //Address in the master/client

Requests[0].Read.Count := 10;

//Read Holding registers 10-19

Requests[1].Enable := TRUE;

Requests[1].FunctionCode := eFun#Fn03_ReadHoldingRegisters;

Requests[1].NodeAdr := 1;

Requests[1].Read.StartAddressRemote := 10; //Address in the slave/server

Requests[1].Read.StartAddressLocal := 10; //Address in the master/client

Requests[1].Read.Count := 10;

//Writing Holding registers 20-29

Requests[2].Enable := TRUE;

Requests[2].FunctionCode := eFun#Fn05_WriteSingleCoil;

Requests[2].NodeAdr := 1;

Requests[2].Write.StartAddressRemote := 20; //Address in the slave/server

Requests[2].Write.StartAddressLocal := 20; //Address in the master/client

Requests[2].Write.Count := 10;

The four In/Out Coils, DiscreteInputs, InputRegisters, HoldingRegisters do also require a variable.

If E.G. you don’t want to use DiscreteInputs, create a variable DiscreteInputs ARRAY[0..0] OF BOOL

16

To avoid having to write OEN\Modbus to address the namespace when programming:

Add OEN\Modbus in the “Namespace – using”:

Errors

The list of ErrorID’s are found in the “instructions reference manual” for the controller.

See the ErrorID’s for NX_SerialRcv, NX_SerialSend, NX_SerialBufClear.

If the “ErrorID” = 16#0C10 then the modbus exception code will be found in “ErrorIDEx”.

List of ErrorID’s in addition to the above:

16#1001 Modbus address outside of Array boundary

16#1002 Invalid modbus function code

16#1004 Response with wrong function code

16#1005 Response with wrong size

16#1006 Wrong CRC

The output “ErrorRequestNo” will contain the value of the ARRAY index of the request that failed.

This value can only be trusted on the rising edge of the output “Error”.

17

Precautions for correct use

The FB can’t be used for serial option boards. (Mounted in the slot at front of NX1P)

Set the parameters on the serial card: (Adjust Baud rate/parity for your application)

In the I/O Map:

Right-click on the correct card, and select “Display Node Location Port”

18

You do need these two variables to operate the function block.

19

3. ModbusTCP_Server

Modbus TCP Server are based on TCP socket FB’s: SktTCPAccept, SktGetTCPStatus, SktTCPRcv,

SktTCPSend, SktTCPClose.

The server will respond to any valid modbus requests.

If the request does try to write to an address set as read only (R), the server will send a modbus

exception code 02.

If the request does try to read/write to a coil/register outside of the range of your ARRAY, the server

will send a modbus exception code 02.

If the Client requests a function code that the server does not support, the modbus exception code 01

will be sent.

Supported modbus functions codes:

 Fn01 Read Coils

 Fn02 Read discrete inputs

 Fn03 Read holding registers

 Fn04 Read input registers

 Fn05 Write single coil

 Fn06 Write single holding register

 Fn15 Write multiple coils

 Fn16 Write multiple holding registers

 Fn23 Read/Write multiple holding registers

3.1. FB Layout

20

3.2. Input Variables

Name Data type Valid
Range

Description

Enable BOOL Enable the slave

Port_No UINT TCP port for the server.

UseAccesslist BOOL FALSE: All registers are RW

TRUE: The register access is determined from
the accesslist

MaxNoOfClients UINT 1-10 To limit the number of clients.

3.3. In-Out Variables

Name Data type Description

Accesslist sModbusAccess[*]

(Dynamic size)

List of address ranges to determine R/W/RW
access.

Coils BOOL[*]

(Dynamic size)

ARRAY[10..19] OF BOOL becomes modbus
address 10 – 19.

DiscreteInputs WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD becomes modbus
address 10 – 19.

InputRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD becomes modbus
address 10 – 19.

HoldingRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD becomes modbus
address 10 – 19.

3.4. Output Variables

Name Data Type Description

Connected BOOL At least one client is connected.

NoOfClientsConnected UINT Number of connected clients

RcvDat_Done BOOL[0..9] True when data received from the client.

RcvSize UINT[0..9] The size of data received from the client.

SendDat_Done BOOL[0..9] True when the server sent response to the client.

SendDat_Error BOOL[0..9] True when the server failed to send response to
the client.

Socket sSOCKET[0..9] Socket details for each client.

3.5. Revisions

Revision In Library Correction

1.0.20 1.00.22

3.6. Credits

 Name

Omron - Norway Bjarte Myklebust

21

3.7. Example

To control the read/write access :
Set the UseAccesslist to “TRUE”.

Create a variable E.G AccessList ARRAY[0..3] OF OEN\Modbus\sModbusAccess

The number of array elements of the In/Out AccessList are dynamic, so you can spesify as many as

you need.

Sample code for filling data into the accesslist:

If you want to grant read and write access to all registers, set the input UseAccesslist to “FALSE”.

Since the In/Out AccessList requires a variable, you can create a variable E.G. AccessList

 ARRAY[0..0] OF OEN\Modbus\sModbusAccess

The four In/Out Coils, DiscreteInputs, InputRegisters, HoldingRegisters do also require a variable.

If E.G. you don’t want to use DiscreteInputs, create a variable DiscreteInputs ARRAY[0..0] OF BOOL

To avoid having to write OEN\Modbus to address the namespace when programming:

Add OEN\Modbus in the “Namespace – using”:

22

Precautions for correct use

Use the “Keep Alive” settings for the Ethernet card:

When using “Keep alive” the TCP socket will send a keep alive message to the client, to check if the

client is still responding. If the client does not respond within the “Keep Alive monitoring time” the

socket will close, and reopen for new connection for the client.

This will also prevent that one client occupies several sockets/connections on the server.

23

4. ModbusTCP_Client

Modbus TCP Client that are based on TCP socket FB’s: SktTCPConnect, SktGetTCPStatus,

SktTCPRcv, SktTCPSend, SktTCPClose.

The Client will sequentially perform the requests with the member .Enable set to true.

How often the requests are performed are controlled by the Input “UpdateRate”.

If one of the requests encounters an error, the error will be set to true, and the value of the Array index

for the request with errors on the Output “ErrorRequestNo”.

For error codes see the section “Errors”.

Supported modbus functions codes:

 Fn01 Read Coils

 Fn02 Read discrete inputs

 Fn03 Read holding registers

 Fn04 Read input registers

 Fn05 Write single coil

 Fn06 Write single holding register

 Fn15 Write multiple coils

 Fn16 Write multiple holding registers

 Fn23 Read/Write multiple holding registers

4.1. FB Layout

24

4.2. Input Variables

Name Data type Description

Enable BOOL Enable the slave

IPAddress STRING[20] The IP address of the server

Port_No UINT The TCP port number of the server.

UpdateRate TIME Time between each poll of the request list.

NodeTimeOut TIME Timeout for each request.

Requests BOOL List of requests to the slave(s)

4.3. In-Out Variables

Name Data type Description

Coils BOOL[*]

(Dynamic size)

ARRAY[10..19] OF BOOL will be modbus
address 10 – 19.

DiscreteInputs WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

InputRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

HoldingRegisters WORD[*]

(Dynamic size)

ARRAY[10..19] OF WORD will be modbus
address 10 – 19.

4.4. Output Variables

Name Data Type Description

Status BOOL True = Activated

RequestCycleDo
ne

BOOL True for one cycle, when polling the request list is completed.

RequestCycleTim
e

TIME The time used for polling the request list.

Error BOOL

ErrorID WORD If Error ID = 16#0C10, you will find a modbus exception code in
ErrorIDEx

ErrorIDEx DWORD Modbus exception code

ErrorRequestNo DINT The array index of the request that got an error.

4.5. Revisions

Revision In Library Correction

1.0.22 1.00.22 Separated modbus addresses into local and remote. So that one
Client can be used for many similar servers.

4.6. Credits

 Name

Omron - Norway Bjarte Myklebust

25

4.7. Example

How to set up the requests :
Create a variable for requests E.G. “Requests”, of the datatype ARRAY[X..Y] OF

OEN\Modbus\sModbusReq.

The number of array elements of the In/Out “Requests” are dynamic, so you can spesify as many as

you need.

Sample code for filling data into the “Request” variable:

//Read coils 1000-1009

Requests[0].Enable := TRUE;

Requests[0].FunctionCode := eFun#Fn01_ReadCoils;

Requests[0].NodeAdr := 1;

Requests[0].Read.StartAddressRemote := 1000; //Address in the slave/server

Requests[0].Read.StartAddressLocal := 1000; //Address in the master/client

Requests[0].Read.Count := 10;

//Read Holding registers 10-19

Requests[1].Enable := TRUE;

Requests[1].FunctionCode := eFun#Fn03_ReadHoldingRegisters;

Requests[1].NodeAdr := 1;

Requests[1].Read.StartAddressRemote := 10; //Address in the slave/server

Requests[1].Read.StartAddressLocal := 10; //Address in the master/client

Requests[1].Read.Count := 10;

//Writing Holding registers 20-29

Requests[2].Enable := TRUE;

Requests[2].FunctionCode := eFun#Fn05_WriteSingleCoil;

Requests[2].NodeAdr := 1;

Requests[2].Write.StartAddressRemote := 20; //Address in the slave/server

Requests[2].Write.StartAddressLocal := 20; //Address in the master/client

Requests[2].Write.Count := 10;

The four In/Out Coils, DiscreteInputs, InputRegisters, HoldingRegisters do also require a variable.

If E.G. you don’t want to use DiscreteInputs, create a variable DiscreteInputs ARRAY[0..0] OF BOOL

26

To avoid having to write OEN\Modbus to address the namespace when programming:

Add OEN\Modbus in the “Namespace – using”:

Errors

The list of ErrorID’s are found in the “instructions reference manual” for the controller.

See the ErrorID’s for TCP socket FB’s: SktTCPConnect, SktGetTCPStatus, SktTCPRcv,

SktTCPSend, SktTCPClose.

If the “ErrorID” = 16#0C10 then the modbus exception code will be found in “ErrorIDEx”.

List of ErrorID’s in addition to the above:

16#1001 Modbus address outside of Array boundary

16#1002 Invalid modbus function code

16#1004 Response with wrong function code

16#1005 Response with wrong size

16#1006 Wrong CRC

16#1007 Mismatch of TransactionID between request and response

16#1008 Mismatch of SlaveID between request and response

16#1009 Mismatch of function code between request and response

16#1010 The expected byte size in response is wrong

16#1011 Mismatch of address between request and response

16#1012 Too many bytes in packet. (Byte size is > 2000 bytes)

16#1013 Unknown function code

The output “ErrorRequestNo” will contain the value of the ARRAY index of the request that failed.

This value can only be trusted on the rising edge of the output “Error”.

27

Precautions for correct use

Use the “Keep Alive” settings for the Ethernet card:

When using “Keep alive” the TCP socket will send a keep alive message to the client, to check if the

client is still responding. If the client does not respond within the “Keep Alive monitoring time” the

socket will close, and reopen for new connection for the client.

This will also prevent that one client occupies several sockets/connections on the server.

28

5. NodeDatRead

Reads all the information that are prepared in the NodeDat structure sequentially.

When all nodes with (InUse = TRUE), and all SDO’s on each node (InUse = TRUE), the Busy goes to

FALSE, and Done = TRUE if successful, or Error = TRUE if not successful completion.

The function block will check the _EC_MBXSlavTbl[NodeAdr] before reading SDO’s from the node.

If there is an error in one or more nodes, the FB will stop with an error, and will not proceed.

5.1. FB Layout

5.2. Input Variables

Name Data type Valid
Range

Description

Execute BOOL Start reading on rising edge.

NoOfSDOs UINT 1-40 Put in the highest number of SDOs in use, to
eliminate unnecessary looping.

5.3. In-Out Variables

Name Data type Description

NodeDat OEN\ECat\SDO\sNodeDat[*]

(Dynamic size)

One array index for each node. The index does
not reflect the node address.

5.4. Output Variables

Name Data Type Description

Done BOOL TRUE at least one cycle after successfully completion. Or as long
as Execute is TRUE. According to PLC Open standard

Busy BOOL TRUE while busy with reading.

Error BOOL TRUE at least one cycle after successfully completion. Or as long
as Execute is TRUE. According to PLC Open standard

5.5. Revisions

Revision In Library Correction

1.0.1 1.00.22 Replaced NodeDat with dynamic ARRAY.Removed Input NoOfNodes

29

5.6. Credits

 Name

Omron - Norway Bjarte Myklebust

5.7. Example

Picture of OEN\ECat\SDO\sNodeDat:

30

Example, set up NodeDat for MX2 inverter:

i := 0;

NodeDat[i].NodeAdr := 4;

NodeDat[i].InUse := TRUE;

j := 0;

NodeDat[i].SdoList[j].Description := 'A001 Freq. Ref. Sel';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3012;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#26;

Value_WORD := 16#4;

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 1;

NodeDat[i].SdoList[j].Description := 'A002 Run Cmd Sel';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3012;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#27;

Value_WORD := 16#4;

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 2;

NodeDat[i].SdoList[j].Description := 'A044 Control Method';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3012;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#63;

Value_WORD := 16#3;

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 3;

NodeDat[i].SdoList[j].Description := 'A131 Acc Curve';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3012;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#CA;

Value_WORD := 16#1;

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 4;

NodeDat[i].SdoList[j].Description := 'A132 Dec Curve';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3012;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#CB;

Value_WORD := 16#1;

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 5;

NodeDat[i].SdoList[j].Description := 'F002 Acc time';

NodeDat[i].SdoList[j].SdoObj.Index := 16#4011;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#26;

Value_DWORD := 400;

ToAryByte(In := Value_DWORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 4;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 6;

NodeDat[i].SdoList[j].Description := 'F003 Dec time';

NodeDat[i].SdoList[j].SdoObj.Index := 16#4011;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#28;

Value_DWORD := 500;

ToAryByte(In := Value_DWORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 4;

NodeDat[i].SdoList[j].InUse := TRUE;

31

j := 7;

NodeDat[i].SdoList[j].Description := 'H030 R1';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3015;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#50;

Value_DWORD := 22387; (* 22,387 *)

ToAryByte(In := Value_DWORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 8;

NodeDat[i].SdoList[j].Description := 'H031 R2';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3015;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#52;

Value_DWORD := 8192; (* 8,192 *)

ToAryByte(In := Value_DWORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 9;

NodeDat[i].SdoList[j].Description := 'H032 L';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3015;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#54;

Value_DWORD := 15185; (* 151,85 *)

ToAryByte(In := Value_DWORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 10;

NodeDat[i].SdoList[j].Description := 'B041 Torque Limit 1';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3013;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#52;

Value_WORD := 60; (* 60% *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 11;

NodeDat[i].SdoList[j].Description := 'B042 Torque Limit 2';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3013;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#53;

Value_WORD := 60; (* 60% *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 12;

NodeDat[i].SdoList[j].Description := 'B043 Torque Limit 3';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3013;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#54;

Value_WORD := 60; (* 60% *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 13;

NodeDat[i].SdoList[j].Description := 'B044 Torque Limit 4';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3013;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#55;

Value_WORD := 60; (* 60% *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

j := 14;

NodeDat[i].SdoList[j].Description := 'B083 Carrier Freq';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3013;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#7D;

Value_WORD := 110; (* 11 kHz *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

32

NodeDat[i].SdoList[j].InUse := TRUE;

j := 15;

NodeDat[i].SdoList[j].Description := 'H002 Motor par Auto';

NodeDat[i].SdoList[j].SdoObj.Index := 16#3015;

NodeDat[i].SdoList[j].SdoObj.Subindex := 16#2D;

Value_WORD := 2; (* Autotuned motorparameters *)

ToAryByte(In := Value_WORD, AryOut := NodeDat[i].SdoList[j].WriteDat[0]);

NodeDat[i].SdoList[j].Value_Size := 2;

NodeDat[i].SdoList[j].InUse := TRUE;

33

6. NodeDatWrite

Writes all the information that are prepared in the NodeDat structure sequentially.

If the Input ExcludeEquals = TRUE, the member IsEqual_ReadDat_WriteDat will determine if the SDO

is written or not. Use the function OEN\ECAT\SDO\NodeDatCmp_Read_Write to set

IsEqual_ReadDat_WriteDat for all the SDO’s.

When all nodes with (InUse = TRUE), and all SDO’s on each node (InUse = TRUE), the Busy goes to

FALSE, and Done = TRUE if successful, or Error = TRUE if not successful completion.

The function block will check the _EC_MBXSlavTbl[NodeAdr] before reading SDO’s from the node.

If there is error in one or more nodes, the FB will stop with an error, and will not proceed.

See example code: “Example, set up NodeDat for MX2 inverter:”

6.1. FB Layout

6.2. Input Variables

Name Data type Valid
Range

Description

Execute BOOL Start writing on rising edge.

ExcludeEquals BOOL Writing only the SDO’s that have
IsEqual_ReadDat_WriteDat = FALSE. To
check for differences, use the
OEN\ECAT\SDO\NodeDatCmp_Read_Write

NoOfSDOs UINT 1-40 Put in the highest number of SDOs in use, to
eliminate unnecessary looping.

6.3. In-Out Variables

Name Data type Description

NodeDat OEN\ECat\SDO\sNodeDat[*]

(Dynamic size)

One array index for each node. The index
does not reflect the node address.

34

6.4. Output Variables

Name Data Type Description

Done BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

Busy BOOL TRUE while busy with reading.

Error BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

6.5. Revisions

Revision In Library Correction

1.0.1 1.00.22 Replaced NodeDat with dynamic ARRAY. Removed Input NoOfNodes

6.6. Credits

 Name

Omron - Norway Bjarte Myklebust

35

6.7. Example

Picture of OEN\ECat\SDO\sNodeDat:

36

7. NodeDatCmp_Read_Write

Compares all the ReadDat values with the WriteDat values for all nodes and all SDO’s.

The return value will be set to TRUE if there are no differences found in any of the SDO’s.

If there are differences, the Output CompareFailed output will be TRUE.

In addition the member .IsEqual_ReadDat_WriteDat will be set for each SDO.

So when using NodeWriteDat function block with the ExcludeEquals = TRUE, only the differences will

be written to the nodes.

For example code: “Example, set up NodeDat for MX2 inverter:”

7.1. FB Layout

7.2. Input Variables

Name Data type Valid
Range

Description

Execute BOOL Start reading on rising edge.

NoOfSDOs UINT 1-40 Put in the highest number of SDOs in use, to
eliminate unnecessary looping.

7.3. In-Out Variables

Name Data type Description

NodeDat OEN\ECat\SDO\sNodeD

at[*]

(Dynamic size)

One array index for each node. The index does
not reflect the node address.

7.4. Output Variables

Name Data Type Description

(Return) BOOL TRUE if compare is successful. (All ReadDat values are equal
with the value set in WriteDat)

CompareFailed BOOL TRUE if compare is unsuccessful. (ReadDat values are not
equal with the value set in WriteDat)

Error BOOL TRUE if NoOfSDOs is greater than 40.

37

7.5. Revisions

Revision In Library Correction

1.0.1 1.00.22 Replaced NodeDat with dynamic ARRAY. Removed Input
NoOfNodes

7.6. Credits

 Name

Omron - Norway Bjarte Myklebust

38

7.7. Example

Picture of OEN\ECat\SDO\sNodeDat:

39

8. NX_SendSMS

The function block is using AT commends to communicate with the modem.

“ATE0” to turn off echo.

“AT+CMGF=1“ to put the modem into “SMS Text mode”.

“AT+CMGS=”PHONE NUMBER””
Then the SMS text are sent.

8.1. FB Layout

8.2. Input Variables

Name Data type Description

Execute BOOL Start reading on raising edge.

DevicePort _sDevicePort See the reference manual for NX_SerialSend, NX_SerialRcv
for help

PhoneNo STRING[256] The receiver phone number, can also use country code:
‘+4797621517’

SMS_Text STRING[256] The SMS tekst

TimeOut TIME Timeout on the serial line operation. The timeout when reading
‘OK’ from the modem to confirm that the SMS has been sent
are hardcoded to 40s.

8.3. In-Out Variables

Name Data type Description

8.4. Output Variables

Name Data Type Description

Done BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

Busy BOOL TRUE while busy with reading.

Error BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

40

8.5. Revisions

Revision In Library Correction

1.0.21 1.00.22

8.6. Credits

 Name

Omron - Norway Bjarte Myklebust

41

8.7. Example

Settings used in Westermo MRD-315:

42

43

9. NX_RcvSMS

The function block is using AT commends to communicate with the modem.

“ATE0” to turn off echo.

“AT+CMGL="ALL"“ to read all the messages in the modem. (Both READ and UNREAD messages)

The function block will extract only the first message.

“AT+CMGD=X,0” to delete the read message from the modems buffer. The X is the buffernumber

the message was stored in.

“AT+CPMS="SM"” to read the number of remaining messages in the buffer of the modem.

9.1. FB Layout

9.2. Input Variables

Name Data type Description

Execute BOOL Start reading on raising edge.

DevicePort _sDevicePort See the reference manual for NX_SerialSend,
NX_SerialRcv for help

TimeOut TIME Timeout on the serial line operation.

9.3. In-Out Variables

Name Data type Description

44

9.4. Output Variables

Name Data Type Description

Done BOOL TRUE at least one cycle after successfully
completion. Or as long as Execute is TRUE.
According to PLC Open standard

Busy BOOL TRUE while busy with reading.

Error BOOL TRUE at least one cycle after successfully
completion. Or as long as Execute is TRUE.
According to PLC Open standard

PhoneNo STRING[256] The senders phone number

SMS_Text STRING[256] The received message.

DateTime STRING[50] Date and Time raw from the message.

NoOfRemainingSMS INT The number of SMS in the buffer of the modem after
the current message was read.

9.5. Revisions

Revision In Library Correction

1.0.21 1.00.22 Complete redesign

9.6. Credits

 Name

Omron - Norway Bjarte Myklebust

9.7. Example

45

10. NX_ClearModemBuffer

The function block is using AT commends to communicate with the modem.

The purpose is to clear all the messages stored in the modem.

Typically before sending a message, and waiting for a specific response.

(In case some has sendt some rubbish SMS etc.)

“ATE0” to turn off echo.

“AT+CMGD=1,4"“ to delete all the messages in the modem.

10.1. FB Layout

10.2. Input Variables

Name Data type Description

Execute BOOL Start reading on raising edge.

DevicePort _sDevicePort See the reference manual for NX_SerialSend, NX_SerialRcv for
help

TimeOut TIME Timeout on the serial line operation.

10.3. In-Out Variables

Name Data type Description

10.4. Output Variables

Name Data Type Description

Done BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

Busy BOOL TRUE while busy with reading.

Error BOOL TRUE at least one cycle after successfully completion. Or as
long as Execute is TRUE. According to PLC Open standard

10.5. Revisions

Revision In Library Correction

1.0.21 1.00.22

46

10.6. Credits

 Name

Omron - Norway Bjarte Myklebust

10.7. Example

47

11. Template

text

11.1. FN Layout

11.2. Input Variables

Name Data type Valid
Range

Default

Description

EN BOOL FALSE Enable function

11.3. In-Out Variables

Name Data type Description

11.4. Output Variables

Name Data Type Description

 BOOL

11.5. Revisions

Revision In Library Correction

1.0.0 1.00.0

11.6. Credits

 Name

Omron - Norway

11.7. Example

